Spring Mass Damping System Question? Maximum acceleration?

AI Thread Summary
The discussion focuses on calculating parameters for a spring mass damping system used in anti-vibration mounts for a 5kg instrument. To achieve vibration isolation, the stiffness of the mounts must exceed 88,821 N/m, ensuring the frequency ratio is greater than √2. The maximum acceleration experienced by the instrument, with a stiffness of 30 kN/m and a damping coefficient of 60 Ns/m, is calculated to be 7.71 m/s². Additionally, the amplitude of the instrument at resonance is determined to be approximately 0.0002172 m. The calculations utilize key equations related to critical damping, frequency ratios, and magnification factors.
Someone121
Messages
3
Reaction score
0
Spring Mass Damping System Question?? Maximum acceleration??

Homework Statement



Hello,

I was wondering if anyone knows how to go about answering these type of questions...

Anti-vibration mounts are used to attach an instrument of mass 5kg to a panel. The panel is vibrating with an amplitude of 1mm at a frequency 30Hz.
Determine
a)the stiffness of the mounts which provides an isolation effect, i.e a reduction in the vibration amplitude of the attached instrument...

b)the maximum acceleration to which the instrument is exposed when the mounts have an effective stiffness of 30kN/m and also provide viscous damping with a damping coefficient of 60Ns/m

c)the acceleration amplitude of the instrument at resonance


Homework Equations




Given MF= X/Y = √( (1 +(2zr)2)/((1-r2) 2 + (2zr)2) )

where X- instrument amplitude of vibration
Y- panel amplitude of vibration
r- frequency ratio
z- damping ratio
MF- magnification factor

We have the following equations

Critical Damping Coefficient cc = 2√km = 2mωn

Equations

f = ωn / 2*(pi)

ωn = √k/m

cc = 2√km

z = c/cc

ωd = ωn√(1-z2)

The Attempt at a Solution



--------------------

Solutions

a) Post 3 for solution

b) Post 4 for solution

c)??
 
Last edited:
Physics news on Phys.org


Your method for the first one is correct.

For the second part I think you can just use amax = ω2Xmax.
 


Here is the solution for part a, its just that we have to take into consideration that r > √2 otherwise no isolation

a) For isolation to happen r > √2

Now r = ω/ωn

Now forced frequency ω = 2(pi)f = 2*pi*30 = 188.49 rad/s

so for r > √2

ω/ωn > √2
ω/√2 > ωn as ω =188.49

188.49/√2 > ωn

133.28 > ωn now if ωn = √(k/m)

133.28 > √(k/m) where m =5 kg

133.28 > √(k/5)

133.282 > (k/5)

17764.2 > (k/5)

5*17764.2 > k

88826>k for isolation



88821 N/m >k

also thanks rockfreak your right about that,

any ideas about part c...
 


Now the solution for b)

We have the following equations

Critical Damping Coefficient cc = 2√km = 2mωn

f = ωn / 2*(pi)

ωn = √k/m

cc = 2√km

z = c/cc

ωd = ωn√(1-z2)

Therefore we can get

ωn = √k/m = √30*103/5 = 77.45 rad/s

And from above equations we can derive that

z = c/cc = c/2mωn

We are given damping coefficient of 60 Ns/m

therefore z = 60/2*5*77.45 = 0.077459

and r = ω/ωn = 188.49/77.45 = 2.43

Now putting these values in the magnification factor equation we can derive the amplitude X of the instrument therefore

Given MF= X/Y = √( (1 +(2zr)2)/((1-r2)2 + (2zr)2) )

So

X/Y = √( (1 +(2*0.077459*2.43)2)/((1-2.432)2 + (2*0.077459*2.43)2) )

X/Y = √(0.04717 ) now Y = 0.001

therefore X = 0.0002172m

Now if maximum acceleration

amax = Xω2 = 0.0002172 * 188.492 = 7.71 m/s2
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top