Proving Continuity of f(x)=x^2sin(pi/x) at x=0

  • Thread starter Thread starter zeroheero
  • Start date Start date
  • Tags Tags
    Continuity
zeroheero
Messages
2
Reaction score
0
Hi, I have an assignment question that asks if f(x) = x^2sin(pi/x), prove that f(0) can be defined in such a way the f becomes continuous at x = 0.
Am I able to apply the squeeze theorem to show,
-1<sin(pi/x)<1
add x^2 to the inequality
-x\<x^2sin(pi/x)\<x^2. (\< us less than or equal to)
Lim as x approaches 0 from the left side, -x^2=0; and
Lim as x approaches 0 from the right side, x^2=0
if g(x) =-x^2 F(x) = x^2sin(pi/x). h(x)= x^2

Is this the best way tom get about this question?
 
Physics news on Phys.org
Pretty much. It is the easiest way without invoking other theorems.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top