A Srednicki's QFT: Feynman Rules and Feynman Diagrams

Junaid456
Messages
5
Reaction score
0
I'm reading Srednicki's Quantum Field Theory. I 'm trying to read Srednicki's presentation of Feynman Diagrams in the chapter Path Integral for the Interacting Field Theory. Link to the book:

The path integral for the phi-cubed theory is equation 9.11 in the book. Please read that.

I get the following:

I get the following:

1. Feynman Diagrams are a away to to organize the terms in the aforementioned mammoth of an expression;
2. I understand the rules. See Srednicki for more details.
3. A diagram may represent a lot of different terms -- that is, those terms would be equivalent. That factor is given by the term: ##V!P!(3!)^P(2!)^V##
4. Note that the coefficient from the Taylor Expansion is: ##\frac{\displaystyle 1}{\displaystyle V!P!(3!)^P(2!)^V}##. It seems our counting factor exactly cancels the Taylor Expansion coefficient. Let's say that the numerical factor, after cancellation is, 1. But we may have over counted -- that is, a combination of permutations, described in the text, gives the same diagram. This is called the symmetry factor of the diagram. So, we must divide the numerical factor by the symmetry factor.

My question is as follows:

> Given my understanding of the Feynman Rules and Feynman diagrams, I am not sure how to figure out how many diagrams correspond to a fixed values of ##V## and ##P##, say ##V = V_{0}## and say ##P = P_{0}##. Let's say I have made a diagram, and I have computed its symmetry factor. I'm not sure how to figure how do I know how many different other diagrams are there and when have exhausted all possibilities.

It'd be great if someone could help me on this front.
 
Last edited by a moderator:
Physics news on Phys.org
Tip: for inline LaTeX, use ## as the delimiter, not $. If you hurry, I think you can you can still edit your post.
 
Okay. It'd be great if either you or someone else could answer the question though.
 
I don't think anyone can read the question, see post 2.
 
Because it's probably now too late for you to edit your post, I've changed the LaTeX delimiters for you. Maybe this will help.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top