Stability of Orbital Resonance Ratios

  • Thread starter Thread starter dragonfiremalus
  • Start date Start date
  • Tags Tags
    Orbit Stability
AI Thread Summary
The discussion centers on the stability of a hypothetical orbital configuration involving four planets in a 4:2:1 resonance, with a fifth planet in a 3:2 resonance. Participants explore the implications of different ways to express orbital resonance ratios, particularly the distinction between the number of orbits completed and the ratio of orbital periods. A simulation demonstrates that the proposed arrangement appears stable over time, with the third planet maintaining a consistent orbital pattern relative to the others. The conversation also touches on the potential for generalizing stability laws for other resonance ratios, particularly those based on powers of two. Overall, the analysis suggests that the proposed orbital arrangement could exhibit long-term stability.
dragonfiremalus
Messages
5
Reaction score
1
I was looking at some interesting resonant orbits in our solar system and was wondering if someone who knows a lot more about planetary orbits than I might be able to answer if a certain scenario would actually lead to stable orbits or not. The scenario I have in mind is four planets tightly packed around their primary so that the first, second, and fourth planets are in a 4:2:1 orbital resonance like Io, Europa, and Ganymede are. Then the third planet from the primary (probably smaller than the others) is placed in a slightly eccentric orbit (I'm thinking eccentricity between .15 and .2) between the second and fourth so that it is in a 3:2 orbital resonance with the fourth planet, and therefore a 3:4 orbital resonance with the second. This could put it in an orbit similar to how the Hilda family of asteroids are to Jupiter, so that whenever it approaches the orbit of the second planet or the fourth planet, the other planet is well ahead, behind, or on the far side of their orbit.
I know all the pieces are stable as we have real life examples, but put together I don't know what would happen. Over all, they would be in a 8:4:3:2 orbital resonance.
 
Astronomy news on Phys.org
I am also interested in this question, but I got confused with the ratio of number of orbits completed in the same time interval, and the ratio of orbital periods (which would be the inverse ratio).
with Galilean moons it is easy, they can be written symmetrically 1:2:4 (ratio of orbital periods) or 4:2:1 (ratio of number of orbits)

But taking your case with 8:4:3:2 as ratio of number of orbits
if we convert it to ratio of orbital periods, we get:
1: 2: 8/3: 4

And since I just wanted to ask the same question but using the ratio of orbital periods so they will be
1:2:3:4

clearly this two are different ratios, although they both have representation that satisfies the 3:4 and 2:3 rules at one of the options.
which is the correct way? It is not 100% clear.

sorry if I hijacked your question, and you actually sorted this out already, please share your view.

Regards,
Qshadow.
 
Qshadow, I have done a bit of research on the subject and by far the most common way I have seen to write orbital resonance is the ratio of number of orbits completed in the same time interval. You could easily state it either way, I just went with what I've seen done more often. Yes, stated as ratio of orbital periods it would be (going from inner to outer) 1:2:8/3:4, or 3:6:8:12 if we want to stick to whole numbers.
 
http://orbitsimulator.com/gravitySimulatorCloud/pfq.html
Here's a sim of this scenario. All planets are 1 Earth mass in circular orbits except #3. It has an ecc of 0.2 and a mass of 0.5 Earth masses. They orbit a sun-mass star with periods of: 10 days, 20 days, 80/3 days, and 40 days. From closest to farthest, each planet begins 60 degrees ahead of the previous one.
The bottom image shows a rotating frame holding the 4th planet stationary. It seems to be stable at least initially. See what happens if you let it run deep into the future.
 
tony873004, thanks for that. Initially I was wondering how useful that specific simulation would be since the orbit of the third planet was not at the angle I wanted with the second and fourth planet. I wanted it to start so that with respect to the outer planet's orbit, the third planet would trace close to a triangle with the fourth planet in the middle of the base. Like this:
orbit3.png


But your simulation started with that triangle tilted, like so:
orbit2.png


But as I watched the simulation, I noticed that the orbit of the third planet changed, and the "triangle" traced by the third planet rotated until it was exactly where I wanted it to start:
orbit1.png


Then began oscillating back and forth around that point. So that shows me that for this simulation at least, that orbit would seem to be very stable. After a thousand orbits or so, the orbits look exactly the same and this is the path the third planet has traced out with respect to the fourth. To me, this suggests pretty good orbital stability.
orbit4.png
 
dragonfiremalus said:
I have done a bit of research on the subject and by far the most common way I have seen to write orbital resonance is the ratio of number of orbits completed in the same time interval.
Thanks for clarification.

And after seeing that nice simulation i wonder if we can generalize this law further, e.g. probably it work for orbit ratios that are powers of two:
32:16:8:4:2:1

But what about packing as much satellites as possible using the rule that we saw now, eg:
32:24:16:12:8:6:4:3:2

so each number between the powers of two is the sum of powers of two at (n-1) + (n-2)
would it be stable as well?
 
Publication: Redox-driven mineral and organic associations in Jezero Crater, Mars Article: NASA Says Mars Rover Discovered Potential Biosignature Last Year Press conference The ~100 authors don't find a good way this could have formed without life, but also can't rule it out. Now that they have shared their findings with the larger community someone else might find an explanation - or maybe it was actually made by life.
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Back
Top