- #1
Ryker
- 1,086
- 2
Alright, everyone, I have some questions in regards friction when rounding a flat curve and was hoping to get some help with it. For that intent, I've borrowed a couple of posts from another old thread on the topic of centripetal force. Hope the authors don't mind.
And one last question. If we suppose rolling friction isn't neglibile, is its direction also towards the centre (because while I suppose the wheels are in fact turning forward, that is tangentially to the circle, the change in their velocity points towards the centre) and not tangential to the circle?
Thanks in advance, guys and girls.
The textbook I'm using actually says the vehicle wouldn't skid, but would just negotiate a turn not as steep as if it would've gone slower. Does that mean that the vehicle will, should it exceed the allowed speed, NOT go out of the turn tangentially, but rather in a curve that will, due to being a part of a circle with a bigger radius, eventually lead it off the road.ZapperZ said:If there's no friction, the vehicle cannever make that turn. Or if the frictional force is LESS than the needed centripetal force, the vehicle will slide. Guess which direction it will slide?Zz.
Oh, and could someone shed more light on the difference between those three types of friction in a flat curve. Say you're traveling slowly. Then the only friction involved is static, right? But what happens when you exceed that speed limit and your wheels keep on turning? Is the static friction still the one that's applied? Or does kinetic friction enter the frame here? If yes, does it substitute static friction or just supplement it? And the direction would in any case still be towards the centre of the (bigger) circle, correct?Caesar_Rahil said:also, there is a difference between rolling, static and kinetic friction...
while turning, static friction is acting as the point of application of force is always at rest
i.e it does not RUB or SLIP on the ground.
kinetic friction acts when slipping occurs.
Rolling friction , is suppose is irrelevant as we can assume road is hard
And one last question. If we suppose rolling friction isn't neglibile, is its direction also towards the centre (because while I suppose the wheels are in fact turning forward, that is tangentially to the circle, the change in their velocity points towards the centre) and not tangential to the circle?
Thanks in advance, guys and girls.