Static solutions of a series of coupled pendulums

Robin04
Messages
259
Reaction score
16

Homework Statement


The equation of motions of a series of pendulums coupled by a torsion spring is this:
##\ddot{\Phi_i}=-\frac{k}{ml^2}(2\Phi_i-\Phi_{i-1}-\Phi_{i+1})##, where k is the torsion spring constant, m is the mass of a single pendulum, and l is the length of a single pendulum. We have N pendulums and we define ##\Phi_0 = \Phi_1##, and ##\Phi_{N+1}=\Phi_N##, in order to avoid the indices to go out of range at the boundaries. I'm looking for static solutions of this system and I'm expecting to get something like a static soliton.

Homework Equations

The Attempt at a Solution


First, for all ##i##, ##\ddot{\Phi_i} = 0##
Then, to make it a bit simpler in the beginning I tried with N = 3, and all constants are 1.
The equations are:
##\Phi_2-\Phi_1-\sin(\Phi_1)=0##
##\Phi_1+\Phi_3-2\Phi_2-\sin(\Phi_2) = 0##
##\Phi_2-\Phi_3-\sin(\Phi_3)=0##
If i add these equations, I get ##\sum_i \sin(\Phi_i)=0##, which is a nicer necessary condition.

I'm struggling to see through this problem. There has to be infinite solutions. I can't give any random value to any ##\Phi## because if I put it into the equations and calculate the rest, my condition for the sums of the sines doesn't work. What tools/tricks can I use to narrow the domain?
I also tried ##\Phi_3=\arcsin(-\sin(\Phi_1)-\sin(\Phi_1+\sin(\Phi_1))## which is a very messy function.
 
Physics news on Phys.org
Robin04 said:
The equation of motions of a series of pendulums coupled by a torsion spring is this:
¨Φi=−kml2(2Φi−Φi−1−Φi+1)
Ops, I made a mistake there. I left out the term from the gravitational potential. The correct equation of motion is:
##\ddot{\Phi_i}=-\frac{k}{ml^2}(2\Phi_i-\Phi_{i-1}-\Phi_{i+1})-\frac{g}{l}\sin(\Phi_i)##
 
Robin04 said:
The equations are:
##\Phi_2-\Phi_1-\sin(\Phi_1)=0##
##\Phi_1+\Phi_3-2\Phi_2-\sin(\Phi_2) = 0##
##\Phi_2-\Phi_3-\sin(\Phi_3)=0##
The first eqn implies Φ1 and Φ2 have the same sign. Likewise, 2 and 3, so...
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top