eXorikos
- 281
- 5
Homework Statement
You have a latice of particles that all have spin 1, but they can change the direction of their spin so constraint \left|S_j\right|=1. There is only interaction with the closest neighbours so we have the following hamiltonian:
H = -J \sum_{\left\langle ij \right\rangle} \vec{S_i} \cdot\vec{S_j} - \vec{h} \cdot \sum^{N}_{j = 1} \vec{\vec{S_j}}
Choose a good orderparameter to treat this in the molecular field approximation. Calculate the selfconsistent equation for this order parameter and determine the spontaneous magnetisation for T<T_c=Jq/3k_b.
Homework Equations
Z=\int_{\left|S_1\right|=1}\cdots \int_{\left|S_N\right|=1} d^3 S_1 \cdots d^3 S_N \exp{\left(-\beta H\right)}
M = \frac{1}{\beta} \nabla_h ln Z
The Attempt at a Solution
As order parameter I pick \vec{M} = \sum_j \vec{S_j} and than I approximate the hamiltonian with q nearest neighbors by
H = \frac{-Jq}{2N} \left(\sum^N_{j=1} \vec{S_j}\right)^2 - \vec{h} \cdot \sum^{N}_{j = 1} \vec{\vec{S_j}}
This gives
Z=\int_{\left|S_1\right|=1}\cdots \int_{\left|S_N\right|=1} d^3 S_1 \cdots d^3 S_N \exp{\left(\frac{\beta Jq}{2N} \left(\sum^N_{j=1} \vec{S_j}\right)^2 + \beta \vec{h} \cdot \sum^{N}_{j = 1} \vec{\vec{S_j}} \right)}
But I can't manage the integral. How do I calculate this integral? The rest I presume is correct?