Statistical physics: Landau theory liquid crystal (2D)

rolotomassi
Messages
52
Reaction score
0

Homework Statement



A simple model for liquid crystals confined to 2 dimensions is o assume each molecule can only align in one of 2 perpendicular directions. To construct a landau model its convenient to define order parameter, s :

s = 2 ( Np - 0.5Nt ) / Nt
Np - number molecules aligned parallel to some director
Nt - Np - number of molecules aligned perpendicular to some director
Nt - total number of molecules

The free energy is F = a + bs + cs^2 + ds^3 + es^4 , determine appropriate values of expressions for a, b, c, d and e for liquid crystal confined to 2 dimensions if a transition is observed from randomly aligned to oriented at some temperature T_critical.

Homework Equations

The Attempt at a Solution



I work out the order parameter for 3 configurations : s=1 (all parallel wrt director), s= -1 (all perpendicular wrt director) and s=0 (randomly aligned)

The free energy should be the same regardless of whether they are aligned parallel or perpendicular w.r.t some arbitrary direction so there should be symmetry for s = +/- 1. This means the coefficients of odd powers of 's' are zero.
F(s) is a quartic so will have 2 stable equilibria and 1 unstable equilibrium. I differentiate and get
s = 0 or s^2 = -c/2e

From what I've seen of other similar problems I am thinking that the phase transition occurs when we go to a stable equilibrium point i.e - s^2 ---> + s^2 when 'c' changes sign. This happens at T_critical so let c(T) = c(T-Tc).
Not even sure if this is right or where I go from here[/B]
 
Reading it back now it is abit wordy isn't it.
Yes I have solved it its okay. Was half way there.
 
Hi, I'm stuck trying to solve a very similar question to this. Any chance you remember your solution?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top