Steady Current and Magnetic Field

AI Thread Summary
The discussion revolves around solving a problem related to the magnetic field generated by two concentric cylinders carrying opposite current densities. Participants emphasize the importance of calculating the magnetic field inside the smaller cylinder by considering the contributions from both cylinders. The concept of symmetry is highlighted, suggesting that the magnetic field can be expressed in terms of a specific direction (e_theta). Clarification is sought regarding the "free region of interest," with a focus on the area within the smaller cylinder rather than the space between the two cylinders. The conversation concludes with an encouragement to break down the problem into simpler components for easier understanding.
SimbaTheLion
Messages
8
Reaction score
0

Homework Statement



Question 3 of http://www.damtp.cam.ac.uk/user/examples/B10b.pdf .

Homework Equations



\nabla \times B = \mu_0 J

The Attempt at a Solution



I know for a cylinder, J (vector) = J (scalar) * k (vector), where unit k is the vector in the z-direction. So \nabla \times B = (0, 0, \mu_0 J), somewhere (not quite sure where this is true in terms of a, b, d). I think I need to find B for the big cylinder, then B for the small cylinder, and combine them somehow? I don't see why the field in between the cylinders is important; we're only interested in B for x² + y² < a².

Thanks!
 
Physics news on Phys.org
I think you have everything you need to do this problem. Write down explicitly the sum of the two fields, one from +J and one from -J, for any point in the current free region of interest. The x dependence should drop out.
 
Spinnor said:
I think you have everything you need to do this problem. Write down explicitly the sum of the two fields, one from +J and one from -J, for any point in the current free region of interest. The x dependence should drop out.

If I was not clear enough, the problem suggested what to do.
 
Spinnor said:
I think you have everything you need to do this problem. Write down explicitly the sum of the two fields, one from +J and one from -J, for any point in the current free region of interest. The x dependence should drop out.

What is the 'free region of interest'? If I take a +J thing from one cylinder and then subtract the J bit from the other cylinder, surely I'm going to end up with an expression for the stuff in between the two cylinders? The question asks for the field within the smaller cylinder, not between the two.

My notes on a vaguely similar problem claim B = B(r)e_theta 'by symmetry'. Not quite sure why it's e_theta by symmetry.
 
SimbaTheLion said:
What is the 'free region of interest'? If I take a +J thing from one cylinder and then subtract the J bit from the other cylinder, surely I'm going to end up with an expression for the stuff in between the two cylinders? The question asks for the field within the smaller cylinder, not between the two.

My notes on a vaguely similar problem claim B = B(r)e_theta 'by symmetry'. Not quite sure why it's e_theta by symmetry.

You break the complex problem down into two simple ones. If you had a single cylinder with current density J you could tell me the magnetic field for any radius r inside the conductor via Ampere's law. To this field you add the imaginary field from the current -J which flows in the smaller cylinder. The sum of J and -J = 0, flows in the small cylinder. Properly added the x component of the magnetic fields should cancel.

If you are still stuck I'll try and add more.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top