Steam Engine work application problem

8point1
Messages
26
Reaction score
0

Homework Statement


In a steam engine the pressure and volume of steam satisfy the equation PV1.4=k, where k is a constant. Calculate the work done by the engine (in ft/lbs) during a cycle when the steam starts at a pressure of 100 lb/in2 and a volume of 400in3 and expands to a volume of 1100in3.

Homework Equations


Use the fact that the work done by the gas when the volume expands from volume v1 to volume v2 is:

W=∫V2v1 P dV



The Attempt at a Solution



As usual, getting hung up on where to start. So I tried to find k. Solving for k at the starting pressure of 100lb/in2 and volume of 400in3 I get a k=439,424.2

That # seems way high. Is the problem assuming the pressure is starting at these values (100lb/in2 and 400in3)??

Thanks
 
Physics news on Phys.org
interesting... now I'm even more confused!
 
Our professor didn't say we needed any special formulas or anything - that we should know how to do this from our previous section's lessons. Where do I start? That link shows more variables than I have (I think) like lambda values, etc.
 
Please, any help would be appreciated. I'm not looking for an answer, just a push in the right direction. Here's what I've tried to do to start out:

-put integral in terms of V
-break down Volume values and try to solve for r and h
-ratio between starting values: 100lb/in^2 and 400in^3

?
 
The attached article shows how to integrate P dV when PV^gamma = k (Note: there are no lambdas present.) Work is explicitly given in terms of initial pressure and initial and final volumes. (See section "Derivation of discrete formula")
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top