I Steam flow rate in 2-chamber steam engine system

AI Thread Summary
The discussion focuses on a two-chamber steam engine system where heated air expands in the piston chamber (P2) to lift the piston. In phase 2, heated air escapes to the duct (P1) while heat continues to be supplied, affecting the volumetric flow rate as some energy is used for lifting the piston. Phase 3 involves cutting off the heat supply and locking the piston, allowing heat and vapor from P1 to flow back into P2. The main inquiry is about determining the steam flow rate entering P2 during phase 2 and when the piston is locked in phase 3. The conversation also touches on the boundary conditions of the system, confirming that P1 is at constant pressure.
Denniskwantas
Messages
3
Reaction score
0
Our system of interest has a duct on the left and a piston chamber on the right that make the shape of the letter T rotated 90º clockwise. The smaller tube on the left is abbreviated as P1 has an unspecified length while the piston chamber is P2. The air in P2 heats up and expands while the pressure remains constant (isobaric process). That said, heat energy (q) is supplied to the piston chamber to heat up the air and lift the piston up simultaneously.

In phase 2, the heated air escapes to P1 via the opening and heat energy is still supplied to the chamber to continue lifting the piston up. Caveat: The volumetric flow rate between P1 and P2 is not conserved because part of it goes to lifting the piston.

In phase 3, the heat supply is cut off and the position of the piston is locked in by some mechanism. The heat and vapor accrued in the isobaric expansion process in P1 will flow to P2.
1.jpg
2.jpg
3.jpg


The question is conceptual rather than finding the exact number. How can I find the flow rate of the steam as it enters P2 in phase 2 and when the piston's position is locked in phase 3 ?

Here are all the relevant equations, rewritten in LaTex.

Screen Shot 2021-10-23 at 9.40.19 AM.png


This is the general equation for mass flow rate which equals to the product of steam density, steam velocity and the area of the opening between P1 and P2 .

Recently I've found another equation for steam flow rate in a pipe.
https://www.physicsforums.com/attachments/291039

d : Pipe Inner Diameter (m)
v : Steam Velocity (m/s)
V : Specific volume (m³/kg)
m_s : Steam Flow Rate (kg/h)

Source: TLV
 
Physics news on Phys.org
You refer to air. Did you mean steam?
 
Yep. Steam it is. But it's not boiling steam though.
 
And what is the boundary condition at the far end of P1? Is it dead ended, or is it at constant pressure? Or something else?
 
As for the boundary conditions though, the P1 tube would be twice as long as P2 and yes, the P1 is at constant pressure with P2 as well.

I'm really interested in knowing whether the expansion of the heated moist air could lift the piston in P2 in any capacity.
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top