Stern-Gerlach Experimental Calculation

SharkyDx
Messages
1
Reaction score
0
I've run into a problem which has been bugging me for days. I know its related to the Stern-Gerlach experiment about firing hydrogen through an inhomogeneous magnetic field, but all i can do is give a vague qualitative description of the answers, and not an actual numerical one (because I don't entirely know what equations should be useful).

I know there's stuff about magnetic moments and spin and dipole moments happening here, but I can't seem to reconcile all these ideas. I'm not looking for a raw solution (I still want to learn something), just pointers as to the physics that's happening here, and possibly what equations are useful. Thanks.

Consider a well-collimated beam of hydrogen atoms in their ground state (ie with zero orbital angular momentum and spin = 1/2) in which the atoms are in thermal equilibrium at a temperature of 600K. The beam enters a region of length 9cm, in which there is a strong magnetic field with a gradient of 2x10³T/m perpendicular to the axis of the beam. After leaving this region the beam travels 1.2m to a screen.
  1. What distribution of hydrogen atoms would one observe at the detector?
  2. How is this different from classical expectations?
  3. How is this different from non-relativistic quantum predictions?
  4. Where will the beam appear on the screen?
  5. How does this provide evidence for a "spin g-factor" of 2?

I know (basically) that because of the inhomogeneous magnetic field, the atoms experience a force in the z-direction (vertically). Classically, there's stuff about all possible ranges of spin/momentum (or something) which would give a continuous band on the screen. Quantum mechanically, there's stuff about quantized spins that will only allow discrete outcomes, and i think the relativistic bit refers to the spin quantum number, m_s, but it might not. I can kinda handle the first three parts (if I'm even on the right track), but the fourth part - actually finding where the beam will appear - is a bit mysterious at the moment.


Thanks again.
 
Physics news on Phys.org
check out the very first chapter of Sakurai's "Modern Quantum Mechanics"--it's about the S.G. experiment.
 
For 4, use the equation for the force on a dipole F=(\mu\cdot\nabla)B,
wilth spin up and spin down.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top