Stewart platform and closed loops

AI Thread Summary
The discussion centers on whether knowing the lengths of the six links in a Stewart platform is sufficient to define the position and orientation of the top plate, assuming a fixed base. One participant argues that creating six closed loop equations and using numerical methods like Newton-Raphson is necessary for accurate calculations, while a colleague believes that simple geometry based on the lengths alone suffices. The complexity of the kinematic problem is highlighted, emphasizing that just having the lengths does not account for the uncertainties in orientation. The conversation suggests that a deeper understanding of kinematics is required to resolve the issue. Ultimately, the debate revolves around the adequacy of geometric solutions versus the need for non-linear analysis in solving the Stewart platform's kinematics.
Trying2Learn
Messages
375
Reaction score
57
TL;DR Summary
How to compute the orientation
Hello!

(I am not asking for someone to do this for me. I am only asking a qualitative question.)

Suppose one knows the lengths of all six links that are involved in the Stewart platform.

Is that enough to define the position and orientation of the top (assuming the base is fixed)

I would take the route of creating six closed loop equations for each of the six struts and using Newton-Raphson (or similar) to
compute pitch, yaw, roll, heave, sway, surge of the top.

However, a colleague is arguing with me that just knowing the lengths of the six arms should be enough.

Picture attached
 

Attachments

  • An-example-of-six-DOF-Stewart-platform-DOF-degree-of-freedom.png
    An-example-of-six-DOF-Stewart-platform-DOF-degree-of-freedom.png
    6 KB · Views: 124
Engineering news on Phys.org
Have you tried searching for how to solve the Steward platform kinematics?
 
Filip Larsen said:
Have you tried searching for how to solve the Steward platform kinematics?
No, but that is because I know how I would do it: write six closed loop equations.

I am more interested in why my colleague insists that just knowing the lengths, is sufficient.
(Actually I did do a search, but most is about the dynamics of it, and I am not focused on that.)

I really want to understand if just knowing the lengths (and some fundamental geometry) is sufficient.
For I would solve the non linear closed loop equations using Newton Raphson (or something like that).

In other words: assume a pitch yaw roll heave sway surge of the top plate. Then, travel from the bottom center, up to the midpoint ( unknowns for position), and then out and back down (involving the pitch, yaw and roll). Get the six non-linear equations and solve.

My colleauge insists that is too complicated and that simple geometry and the six lengths are enough. I don't think so.
 
Filip Larsen said:
Have you tried searching for how to solve the Steward platform kinematics?
In other words...

If i take off the top plate and remove the six struts, I have six struts of known length.

Now I have to reassemble the platform, but all I have are six legs of specific length -- and I do not think I can reassemble it: he insists it is possible. I think there is too much uncertainty about the orientation of the legs.

I think that that it is NOT geometrically simple (like my colleagues says) and does require a non-linear analysis.
 
To me it still sounds like you are asking if the (forward) kinematic problem can be solved in closed form, a question which I believed can be answered by searching for how to solve that problem. That the problem is described as a problem in kinematic does not mean it is only relevant for when the platform is moving.

Alternatively you can perhaps enter into a dialog with your colleagues to settle the details. In any case it is hard for us to guess what you or your colleagues mean during some discussion you had.
 
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top