I am now looking at a physics problem that should be a use of stokes' theorem on a torus. The picture (b) here is a torus that the upper and bottom sides are identified as the same, so are the left and right sides. ##A## is a 1-form and ##F = dA## is the corresponding curvature. As is shown in the equation, the author says the integration of ##F## over the whole torus is the same thing as the difference between the two line integral along C1 and C2. Is this a case of stokes' theorem? I don't understand how C1 and C2 is the boundary of S. Please help.(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Stokes' theorem on a torus?

Tags:

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**