Strategies for Evaluating Elliptic Integrals

  • Thread starter Thread starter cepheid
  • Start date Start date
  • Tags Tags
    Integral
cepheid
Staff Emeritus
Science Advisor
Gold Member
Messages
5,197
Reaction score
38

Homework Statement



Can you give me a strategy or get me started in the right direction?

I need to evaluate:

\int_{x_1}^{x_2} (E-\alpha |x|^{\nu})^{\frac{1}{2}} \,dx

Homework Equations



\nu > 0

x1 and x2 are known in terms of E, alpha, and nu

The Attempt at a Solution

 
Last edited:
Physics news on Phys.org
okay I fixed a crucial mistake (forgetting the dx). I wonder if that will help, now that you know what variable I'm supposed to be integrating wrt.
 
For arbitrary \nu it's typically an elliptic integral.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top