"Don't panic!"
- 600
- 8
How does one prove the following:
\int^{c}_{a} f\left(x\right)dx = \int^{b}_{a} f\left(x\right)dx +\int^{c}_{b} f\left(x\right)dx
where f\left(x\right) is continuous in the interval x\in \left[a, b\right], and differentiable on x\in \left(a, b\right).
My approach was the following:
Given that \int^{b}_{a} f\left(x\right)dx = \lim_{n\rightarrow \infty} \frac{\left(b-a\right)}{n} \sum^{n}_{i=1} f\left(x^{\ast}_{i}\right), where x^{\ast}_{i} \in\left[x_{i},x_{i+1}\right], we have that
\int^{b}_{a} f\left(x\right)dx +\int^{c}_{b} f\left(x\right)dx = \lim_{n\rightarrow \infty} \frac{\left(b-a\right)}{n} \sum^{n}_{i=1} f\left(x^{\ast}_{i}\right) + \lim_{n\rightarrow \infty} \frac{\left(c-b\right)}{n} \sum^{n}_{i=1} f\left(x^{\ast}_{i}\right)
\qquad\qquad\qquad\qquad\qquad\quad= \lim_{n\rightarrow \infty} \left[\frac{\left(b-a\right)}{n} \sum^{n}_{i=1} f\left(x^{\ast}_{i}\right)+\frac{\left(c-b\right)}{n} \sum^{n}_{i=1} f\left(x^{\ast}_{i}\right)\right] = \lim_{n\rightarrow \infty} \frac{1}{n}\left[\left(b-a\right) +\left(c-b\right) \right]\sum^{n}_{i=1} f\left(x^{\ast}_{i}\right)
\qquad\qquad\qquad\qquad\qquad\quad= \lim_{n\rightarrow \infty} \frac{\left(c-a\right)}{n} \sum^{n}_{i=1} f\left(x^{\ast}_{i}\right) = \int^{c}_{a} f\left(x\right)dx
However, I have a feeling that this isn't quite correct?!
\int^{c}_{a} f\left(x\right)dx = \int^{b}_{a} f\left(x\right)dx +\int^{c}_{b} f\left(x\right)dx
where f\left(x\right) is continuous in the interval x\in \left[a, b\right], and differentiable on x\in \left(a, b\right).
My approach was the following:
Given that \int^{b}_{a} f\left(x\right)dx = \lim_{n\rightarrow \infty} \frac{\left(b-a\right)}{n} \sum^{n}_{i=1} f\left(x^{\ast}_{i}\right), where x^{\ast}_{i} \in\left[x_{i},x_{i+1}\right], we have that
\int^{b}_{a} f\left(x\right)dx +\int^{c}_{b} f\left(x\right)dx = \lim_{n\rightarrow \infty} \frac{\left(b-a\right)}{n} \sum^{n}_{i=1} f\left(x^{\ast}_{i}\right) + \lim_{n\rightarrow \infty} \frac{\left(c-b\right)}{n} \sum^{n}_{i=1} f\left(x^{\ast}_{i}\right)
\qquad\qquad\qquad\qquad\qquad\quad= \lim_{n\rightarrow \infty} \left[\frac{\left(b-a\right)}{n} \sum^{n}_{i=1} f\left(x^{\ast}_{i}\right)+\frac{\left(c-b\right)}{n} \sum^{n}_{i=1} f\left(x^{\ast}_{i}\right)\right] = \lim_{n\rightarrow \infty} \frac{1}{n}\left[\left(b-a\right) +\left(c-b\right) \right]\sum^{n}_{i=1} f\left(x^{\ast}_{i}\right)
\qquad\qquad\qquad\qquad\qquad\quad= \lim_{n\rightarrow \infty} \frac{\left(c-a\right)}{n} \sum^{n}_{i=1} f\left(x^{\ast}_{i}\right) = \int^{c}_{a} f\left(x\right)dx
However, I have a feeling that this isn't quite correct?!