Substituting for Intergral: Tricky Intergral

  • Thread starter Thread starter Lee
  • Start date Start date
Lee
Messages
55
Reaction score
0
Which substituation would I need to use for this intergral;

[y.du/(y^2 + (x - u)^2)]
 
Physics news on Phys.org
The integrand looks like 1/(1+x^2) which has antiderivative arctan(x). Try to make substitutions to match that expression.
 
Got it, take the y out the intergral, make b=x-u then db=-du sub in and use the arctan intergral, getting -tan^-1((x-u)/y)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top