Substitution method with Integration by Parts?

csinger1
Messages
9
Reaction score
0
Substitution method with Integration by Parts?

Homework Statement



Evaluate the integral...
∫x^3[e^(-x^2)]dx


Homework Equations



∫udv=uv-∫vdu

The Attempt at a Solution


I first tried using integration by parts setting u and dv equal to anything and everything. This seemed to make it more complicated so I decided to use the substitution method setting y=-x^2 and dy=-2xdx and finally -1/2dy=xdx to give me
1/2∫ye^ydy
From here i used integration by parts with u=y, du=dy, v=e^y and dv=e^y dy to get
1/2(ye^y-∫e^y dy) = 1/2(ye^y-e^y)
and then
1/2[-x^2e^(-x^2)-e^(-x^2)]
This problem got really confusing with all the variables and I just want to make sure that I'm not way off base with my methods and solution.
Thanks in advance for any input!
 
Physics news on Phys.org


csinger1 said:

Homework Statement



Evaluate the integral...
∫x^3[e^(-x^2)]dx


Homework Equations



∫udv=uv-∫vdu

The Attempt at a Solution


I first tried using integration by parts setting u and dv equal to anything and everything. This seemed to make it more complicated so I decided to use the substitution method setting y=-x^2 and dy=-2xdx and finally -1/2dy=xdx to give me
1/2∫ye^ydy
From here i used integration by parts with u=y, du=dy, v=e^y and dv=e^y dy to get
1/2(ye^y-∫e^y dy) = 1/2(ye^y-e^y)
and then
1/2[-x^2e^(-x^2)-e^(-x^2)]
This problem got really confusing with all the variables and I just want to make sure that I'm not way off base with my methods and solution.
Thanks in advance for any input!

Looks right to me.
 


That's a relief! I spent a loooonnnggg time working this problem. Thanks!
 


Once you have gotten an antiderivative, it's a good practice to check it by differentiating it. If your work is correct, the derivative of your answer should be the original integrand.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top