Sum of small displacement vectors.

AI Thread Summary
The discussion focuses on calculating the total distance traveled by an object moving in a 3D space by summing small displacement vectors over time. It proposes splitting the time interval from the start to the end of motion into small segments and adding the lengths of the resulting displacement vectors. As the segment length approaches zero, the sum converges to the actual distance traveled, resembling a Riemann sum for a line integral. Additionally, an alternative method for defining arclength involves using a differential mapping that maintains unit vector length, although this may not apply to all curves, such as fractals. The conversation confirms the validity of the initial approach and explores its mathematical foundations.
STAii
Messages
327
Reaction score
1
Suppose we have an object.
The object is moving in a 3D world.
Now, let St1 - t2 denote the displacement vector from moment t1 to moment t2.
Now, let's say that t0 is the moment of the beginning of the motion, and (tf) is the last moment of movement.
We can split the time from t0 to tf into small bands, each x seconds long.
Now, let's add up the length of the vectors |St0 - t0+x| + |St0+x - t0+2x| + |St0+2x - t0+3x| + ... + |S(something) - tf| = Y
Now, it is obivous (at least for me) that if you make x smaller and smaller (x->0) then the value of Y will get nearer and nearer to the Distance passed by the object.
First of all, am i right ? Secondly (if so), how can it be prooved ?
Thanks !
 
Mathematics news on Phys.org
That is (typically) how the arclength is defiend! What you described is just the riemann sum for the line integral

∫|ds|

The only other way of which I know that one could define the arclength of a path is if you can find a differential mapping from [0, t] to your curve such that the derivitive is always a unit vector. (intuitively this map would thus preserve length), then the arclength of your curve would be t.
 
Of course this approach would not work in certain cases. e.g. tracing the mandlebrot curve, or a similar fractal.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top