Superconductivity or insulation at 0 K ?

In summary: But having a residual resistivity at 0K does not mean the material is an insulator. An "insulating behavior" implies that a plot of resisitivity versus temperature has a negative slope. This is the typical behavior of semiconductors. A "metallic behavior" on the other hand has a positive slope, meaning the resistivity increases with increasing temperature. [See Valla et al. Nature v.417, p.627 (2002)] This behavior is described within the Fermi Liquid theory, the "bad metals" description, and even Varma's "Marginal Fermi Liquid".In summary, at temperatures near absolute zero a conductor becomes a super-conductor, and there is no logic that at 0 K
  • #1
omul_b
4
0
Hy! I made a bet with a friend. He said that at absolute zero, there is no movement so a conductor becomes an insulator (remember, it's about conductors, not semi-conductors). I say the exact opposite: because at temperatures near absolute zero a conductor becomes a super-conductor there is no logic that at 0 K things should be any different. So, which is it, is there no conductivity or super-conductivity. The really annoying part is that the net is very vague about this and they only discuss about temperatures NEAR absolute zero. That's why it's sooo hard. Please help. Thanks !
 
Physics news on Phys.org
  • #2
omul_b said:
Hy! I made a bet with a friend. He said that at absolute zero, there is no movement so a conductor becomes an insulator (remember, it's about conductors, not semi-conductors). I say the exact opposite: because at temperatures near absolute zero a conductor becomes a super-conductor there is no logic that at 0 K things should be any different. So, which is it, is there no conductivity or super-conductivity. The really annoying part is that the net is very vague about this and they only discuss about temperatures NEAR absolute zero. That's why it's sooo hard. Please help. Thanks !

You win the bet, but not for the reason you have described.

If you look at the conductivity of an ordinary metal, and you measure this conductivity as a function of temperature, as the temperature drops, the conductivity increases. [Conductivity is the reciprocal of resistivity.] Now unless your friend can explain why this is so and then suddenly there is a discontinuity where the conductivity goes immediately to zero right at T=0, then there's no reason to expect that the conductivity to continue to increase, maybe even reaching a very high value at T=0.

There is a good explanation for this. "Resistivity" is due to the collision of charge carriers with itself, with the vibrating lattice ions, and with impurities. In most cases, the collision with the vibrating lattice ions dominates. As temperature decreases, the lattice ions vibrates less, thus resistivity decreases and consequently conductivity increases. At T=0, in principle, the lattice ions have "extremely low vibrations" (notice I didn't say zero vibrations), and thus the conductivity is maximum here.

Is this a superconductor? NO! Not all metals can become a superconductor. Having zero resistivity, even in principle, is not the only criteria of a superconductor (even this is dubious because almost every metals have residual resistivity even as T approaches 0K).

Zz.
 
  • #3
To expand, in some materials where there are impurities you can have resistivity spike to very high values at zero temperatures due to something called the Kondo effect, in which the magnetic scattering cross section of impurity elements diverges. This causes the charge carriers to scatter randomly off impurities at all distances, and thus it breaks up any coherence in the motion of the charge carriers, thus no current.
 
  • #4
We need to be clear that they're talking about your ordinary, non-exotic metals. The Kondo effect, which really is a higher order scattering with magnetic impurities, would not be something that they would be considering here.

Zz.
 
  • #5
ZapperZ said:
You win the bet, but not for the reason you have described.
If you look at the conductivity of an ordinary metal, and you measure this conductivity as a function of temperature, as the temperature drops, the conductivity increases.
...
Having zero resistivity, even in principle, is not the only criteria of a superconductor (even this is dubious because almost every metals have residual resistivity even as T approaches 0K).
All metals in the normal state have residual resistivity at 0 K.

I would not say that omul_b won the bet.
 
  • #6
Pieter Kuiper said:
All metals in the normal state have residual resistivity at 0 K.
I would not say that omul_b won the bet.

But having a residual resistivity at 0K does not mean the material is an insulator. An "insulating behavior" implies that a plot of resisitivity versus temperature has a negative slope. This is the typical behavior of semiconductors. A "metallic behavior" on the other hand has a positive slope, meaning the resistivity increases with increasing temperature. [See Valla et al. Nature v.417, p.627 (2002)] This behavior is described within the Fermi Liquid theory, the "bad metals" description, and even Varma's "Marginal Fermi Liquid".

In any case, even with a residual resistivity, the material certainly isn't an insulator.

Zz.
 
Last edited:

1. What is superconductivity?

Superconductivity is a phenomenon in which certain materials exhibit zero electrical resistance when cooled to very low temperatures, typically close to absolute zero (0 K or -273.15°C).

2. How does superconductivity work?

Superconductivity occurs when electrons in a material pair up and move together in a coordinated manner, allowing for the efficient transfer of electricity without any energy loss due to resistance.

3. What are some applications of superconductivity?

Superconductivity has many practical applications, including in healthcare (MRI machines), transportation (magnetic levitation trains), and energy transmission (power lines).

4. What is insulation at 0 K?

Insulation at 0 K refers to the complete absence of any movement or transfer of heat at absolute zero temperature. In this state, all molecular motion stops and materials become perfect insulators, with no ability to conduct heat.

5. Can superconductivity occur at room temperature?

While most superconducting materials require extremely low temperatures to exhibit superconductivity, there have been recent advancements in creating materials that exhibit this phenomenon at higher temperatures, such as -135°C. However, achieving superconductivity at room temperature is still a major challenge for scientists.

Similar threads

  • Atomic and Condensed Matter
Replies
10
Views
3K
Replies
11
Views
858
  • Atomic and Condensed Matter
Replies
3
Views
3K
Replies
46
Views
2K
  • Atomic and Condensed Matter
Replies
2
Views
3K
  • Atomic and Condensed Matter
Replies
2
Views
1K
Replies
9
Views
5K
  • Atomic and Condensed Matter
Replies
6
Views
3K
  • Electromagnetism
Replies
1
Views
2K
  • Introductory Physics Homework Help
Replies
3
Views
727
Back
Top