daudaudaudau
- 297
- 0
Hi. Does anyone know how to prove that
<br /> \int \int dS \hat \mathbf n = \int \mathbf r \times d\mathbf r<br />
i.e., the surface integral of the unit normal vector equals the line integral on the r.h.s. ?
<br /> \int \int dS \hat \mathbf n = \int \mathbf r \times d\mathbf r<br />
i.e., the surface integral of the unit normal vector equals the line integral on the r.h.s. ?