Knaapje
- 8
- 0
Homework Statement
\int\int _{S} \sqrt{1 + x^2 + y^2} dS
Given that S is the surface of which \textbf{r}(u,v) = u\cdot cos(v)\textbf{i}+u\cdot sin(v)\textbf{j}+v\textbf{k} is a parametrization. (0 \leq u \leq 1, 0 \leq v \leq \pi)
Homework Equations
dS = \left| \frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v} \right| du dv
The Attempt at a Solution
I think the answer is \frac{4}{3}\pi, because dS = \sqrt{1+u^2}du dv and \sqrt{1+x^2+y^2} = \sqrt{1+u^2} using the given parameterization.