Does This Function Satisfy the Parallelogram Property?

  • Thread starter Thread starter Tenshou
  • Start date Start date
  • Tags Tags
    Drag Symmetric
Tenshou
Messages
153
Reaction score
1
I am having problems showing the following:

##f## and ##g## are two linearly independent functions in ##E## and ##\theta : \mathbb{R} \to \mathbb{R}## is an additive map such that ##\theta(\mu \nu) = \theta(\mu)\nu +\mu \theta(\nu); \mu,\nu \in \mathbb{R}##. Show that the function;

##\psi \left(x\right)## ##=## ##f \left(x\right)\theta \left[g\left(x\right)\right]## ##-g\left(x\right)\theta\left[f\left(x\right)\right]##

satisfies the parallelogram property and the relation ##\psi\left(\lambda x\right)=\lambda ^{2}\psi\left(x\right)##.

Okay, so, I don't know where to start; I understand that I can begin to look at the picture of the parallelogram id. and show the similarities, like when the minus sign comes from. If you picture the two functions as vectors you can see that the minus sign comes from the direction in which the ##g## vector in directed
Parallelogram_law.PNG
and the same with ##f##, but after this, I cannot "show" it satisfies the second property.

PS: Think of ##\psi\left(x\right)## as being the inner product of ##x## with itself.
 
Last edited:
Physics news on Phys.org
Hey Tenshou.

The relation looks like its a standard norm property (i.e. a quadratic form). Is that useful for you? (If you can show its a quadratic form or a norm like object the rest should follow).
 
Thanks Chiro that actually seems like it will help.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top