Symmetric Matrix and Definiteness

MikeDietrich
Messages
31
Reaction score
0

Homework Statement


If A is a symmetric matrix, what can you say about the definiteness of A^2? Explain.



Homework Equations


I believe I need to use the face that A^2=SD^2S^-1.

I know that if all the eigenvalues of a symmetric matrix are positive then the matrix is positive definiteness and if the eigenvalues are positive and zero then the matrix is semidefinite.

Not sure where to go from here.
 
Physics news on Phys.org
So, we need to show that A2 is positive definite? What does this mean?
 
I don't know if A^2 will be positive definite. Oh, wait... if A^2= SD^2S^-1 then the diagonal matrix squared will only give positive or zero eigenvalues so A^2 will be positive semidefinite unless A is invertible then it would be positive definite. Do I have to worry about the orthogonal matrix and its inverse?
 
Yes, A2 will always be positive definite, unless A is zero...
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top