Proving Angle Sums in Cyclic Polygons: A Generalization Approach

  • Thread starter Thread starter Natasha1
  • Start date Start date
  • Tags Tags
    Symmetry
Natasha1
Messages
494
Reaction score
9
Right I have been given the following problem and cannot resolve it. I have had an attempt but without much success. Could anyone help me with this exercise, please?

A cyclic hexagon is a hexagon whose vertices all lie on the circumference of a circle.

The vertices of a cyclic hexagon are labelled in order A to F. Prove that the sum of the interior angles at A, C and E is equal to the sum of the interior angles at B, D and F.

Generalise (concisely) to other cyclic polygons?

My answer so far

I drew the hexagon and labelled angle A is formed of angles f and a, B of a and b, C, b and c, D of c and d, E of d and e and F of e and f.

And wrote from the drawing we can see that

a+f+b+c+e+d = a+f+b+c+e+d

But I don't think this is really a clear way of proving is it? Do I need to use angles dimensions and sides?

Where do I go from here basically?
 
Physics news on Phys.org
Use Theorem 2 from here.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top