hokhani said:
Why the curve E(k) in the first brillouin zoon is symmetric? For example why in the first BZ of a one-dimensional lattice we have E(k)=E(-k)?
This is true in general, not just for 1-D. By Bloch's theorem the solutions of your Schrödinger equation will be Bloch states given by
##\psi_{\textbf{k}}(\textbf{r}) = \exp(i\textbf{k}.\textbf{r})u_{\textbf{k}}(\textbf{r})##
We can note a property of the Bloch states when ##\textbf{k} \rightarrow -\textbf{k}##. When we take the Hermitian conjugate of the above equation we get
##\psi_{\textbf{k}}^*(\textbf{r}) = \exp(-i\textbf{k}.\textbf{r})u_{\textbf{k}}^*(\textbf{r})##
Changing ##\textbf{k} \rightarrow -\textbf{k}## in the above equation we get
##\psi_{-\textbf{k}}^*(\textbf{r}) = \exp(i\textbf{k}.\textbf{r})u_{-\textbf{k}}^*(\textbf{r})##
Comparing this with the very first equation it can be seen that
##\psi_{-\textbf{k}}^*(\textbf{r}) = \psi_{\textbf{k}}(\textbf{r})##
##u_{-\textbf{k}}^*(\textbf{r}) = u_{\textbf{k}}(\textbf{r})##
The Bloch states must obviously satisfy Schrödinger's equation
##H \psi_{\textbf{k}}(\textbf{r}) = \left[-\frac{\hbar^2}{2m}\nabla^2+V(\textbf{r})\right] \psi_{\textbf{k}}(\textbf{r}) = E_{\textbf{k}} \psi_{\textbf{k}}(\textbf{r})##
Now, we know that the Hamiltonian is Hermitian (i.e. ##H = H^\dagger##). Therefore taking the Hermitian conjugate of the above equation we get:
##H^\dagger \psi_{\textbf{k}}^*(\textbf{r}) = \left[-\frac{\hbar^2}{2m}\nabla^2+V(\textbf{r})\right] \psi_{\textbf{k}}^*(\textbf{r}) = E_{\textbf{k}} \psi_{\textbf{k}}^*(\textbf{r})##
##E_{\textbf{k}}## stays the same since eigenvalues of a Hermitian operator are real. Now, once again changing ##\textbf{k} \rightarrow -\textbf{k}## we get
##\left[-\frac{\hbar^2}{2m}\nabla^2+V(\textbf{r})\right] \psi_{-\textbf{k}}^*(\textbf{r}) = E_{-\textbf{k}} \psi_{-\textbf{k}}^*(\textbf{r})##
Using the property of Bloch states shown above the ##\psi_{-\textbf{k}}^*(\textbf{r})## can be replaced to give
##\left[-\frac{\hbar^2}{2m}\nabla^2+V(\textbf{r})\right] \psi_{\textbf{k}}(\textbf{r}) = E_{-\textbf{k}} \psi_{\textbf{k}}(\textbf{r})##
Comparing this with the original Schrödinger equation you can see that
##E_{-\textbf{k}} = E_{\textbf{k}}##