Tackling Tricky Integration Homework

  • Thread starter Thread starter ronaldoshaky
  • Start date Start date
  • Tags Tags
    Integration
ronaldoshaky
Messages
52
Reaction score
0

Homework Statement

E = \frac{e^2}{4 \pi \epsilon_0 a_0^3 } \left( - b \int_0^b e^{- \frac{2r}{a_0}} dr + \int_0^b r e^{- \frac{2r}{a_0}} dr \right)

I have to use these integrals,

\int_0^x e^{-u} du = 1 - e^{-x} and \int_0^x u e^{-u} du = 1 - e^{-x} - xe^{-x}

I get:

The Attempt at a Solution



E = \frac{e^2}{4 \pi \epsilon_0 a_0^3 } \left( - \frac{a_0 b}{2} (1 - e^{- \frac{2b}{a_0}}) + \left(- \frac{- a_0 b}{2} e^{- \frac{2b}{a_0}} - \frac{a_0^2}{4} e^{- \frac{2b}{a_0}} + \frac{a_0^2}{4} \right) \right)
 
Physics news on Phys.org
I think you blew a sign in the third term. It should be negative, not positive. Otherwise, it looks correct.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top