Take the anti derivative of (X^2)/sqrt(1-x)soln'let u=1-x

  • Thread starter Thread starter johnnyboy2005
  • Start date Start date
  • Tags Tags
    Derivative
johnnyboy2005
Messages
29
Reaction score
0
take the anti derivative of (X^2)/sqrt(1-x)

soln'... let u=1-x... then -du=dx and x^2 = (1-u)^2 (sub back in)...

this gives me -2*u^(1/2)*(15-10*u+3*u^2) /15... (sorry for lack of proper terms)


anyway, this turns out to be wrong...where did i go wrong here?
 
Physics news on Phys.org
Try this:

\int \frac{x^2}{\sqrt{1-x}}dx = -\int \frac{(1-u)^2}{\sqrt{u}}du = -\int u^{-\frac{1}{2}}(1-2u+u^2) du

then distribute the u^{-\frac{1}{2}} term over the quadratic and integrate
 
yeah...that's what i was getting but it was in a different form. Thanks a lot !1
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top