Taylor expansion of an electrostatics problem

mmpstudent
Messages
16
Reaction score
0

Homework Statement



The problem has six charges that are at the corners of a regular hexagon in the xy plane, each charge a distance a from the origin. I have already solved for the electric fields in the x and y direction and now am trying to apply an approximation for the field on the x-axis at where x>>a. the field along the x-axis is

E_{x}= \displaystyle\sum_{n=1}^{6} \frac{x-acos\frac{k\pi}{3}}{[x^{2}-2axcos\frac{k\pi}{3}+a^{2}]^{3/2}}

I am supposed to use a power series in the small quantity a/x using the method of taylor series to get to

E_{x}= \frac{1}{4\pi\epsilon_{0}}[{\frac{6q}{x^{2}}+\frac{9qa^{2}}{2x^{4}}}]

I haven't done this level math in a long time and I am sure that it is not too difficult, but I don't know what it means in the small quantity a/x. Do I just set x>>a in the efield equation and go about my business, if so, I don't understand where the a^2 term comes from in the numerator.
 
Last edited:
Physics news on Phys.org
mmpstudent said:

Homework Statement



The problem has six charges that are at the corners of a regular hexagon in the xy plane, each charge a distance a from the origin. I have already solved for the electric fields in the x and y direction and now am trying to apply an approximation for the field on the x-axis at where x>>a. the field along the x-axis is

E_{x}= \displaystyle\sum_{n=1}^{6} \frac{x-acos\frac{k\pi}{3}}{[x^{2}-2axcos\frac{k\pi}{3}+a^{2}]^{3/2}}

I am supposed to use a power series in the small quantity a/x using the method of taylor series to get to

E_{x}= \frac{1}{4\pi\epsilon_{0}}{\frac{6q}{x^{2}}+\frac{9qa^{2}}{2x^{4}}}

I haven't done this level math in a long time and I am sure that it is not too difficult, but I don't know what it means in the small quantity a/x. Do I just set x>>a in the efield equation and go about my business, if so, I don't understand where the a^2 term comes from in the numerator.

You need to use [noparse] [ tex ] [ /tex ] or [ itex ] [ /itex ] [/noparse] (without the spaces). In other words, your slashes were oriented the wrong way in your closing tags. I fixed them for you. Note that you can also surround your LaTeX code with double dollar signs or double pound signs on either side as shorthand for tex and itex tags respectively.

Taylor series expansion: let's say you have some function f(u) of some independent variable u. The Taylor series expansion of the function around some point "b" is given by $$f(u) = \sum_{n=0}^\infty \frac{1}{n!} \left[ \frac{d^n}{du^n}f(u)\right]_{u=b} (u - b)^n $$ $$ = f(b) +\left. \frac{df}{du}\right|_{u = b} (u - b) + \frac{1}{2}\left. \frac{d^2f}{du^2}\right|_{u=b}(u - b)^2 +~\textrm{H.O.T.}$$ where H.O.T. means "higher order terms." If you think about it, if you truncate the infinite series after n terms, then this amounts to finding a (n-1)th -order polynomial approximation to the function. This approximation is exactly correct at the point u = b, but it begins to diverge away from it as u moves away from b.

In this case, your independent variable is u = a/x, and you're taking the Taylor series expansion around the point b = 0. So it's okay to neglect higher order terms, and still have a pretty accurate approximation, as long as a/x is very close to 0. (u is very close to b). That is the situation you have in this problem.
 
Last edited:
Okay, so my thinking was not too far off. Now I just need to get to work. Thanks for the clarification on both the tex and the problem.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top