Taylor Series Expansion of g(z)=1/(z^3) About z0=2

buzzmath
Messages
108
Reaction score
0

Homework Statement


z is a complex number. find the taylor series expansion for g(z)=1/(z^3) about z0= 2.in what domain does the taylor series of g converge. z0 is z subscript 0


Homework Equations





The Attempt at a Solution



I wrote g(z)=1/(z^3) = 1/(2+(z^3)-2) = (1/2)*1/(1+(z^3 -2)/2) then i was thinking I could use the identity 1/(1+z)=summation( (z^n) / (n!) ) when |z|<1 so then the expansion would be the summation (z^3 -2)^n / 2^n+1 in the domain |z^3 - 2| <2 I think this is right but it's not the taylor series expansion because I have the z^3 in there. the domain needs to be in the form |z-2| < R and in the summation I need to have (z-2)^n not (z^3 - 2)^n How do I get rid of the z^3 and have the answer in the right form?
thanks
 
Physics news on Phys.org
You don't have to pull any tricks. The taylor series is the sum of the nth derivatives of g evaluated at 2, times (z-2)^n divided by n!. Concentrate on the first part of that. 1/2^3, -3/2^4, 3*4/2^5 etc.
 
so I would just find the nth derivative of g which is
g^(n) (z)= (-1)^n *(n+2)!/(2*z^(n+3)) where g^(n) (z) is the nth derivative of g at z
then I evaluate these derivatives at z = 2 to and divide by n! and multiply by (z-2)^n to get g(z) = summation[ (-1)^n *(n+2)!*(z-2)^n / (n! * 2^n+4)] sorry if it looks a little messy
is there an easier way to do this or when I'm given a problem like this do I just find the nth derivatives and then plug it in like above? it seems like it could get messy sometimes. Also, how would you find the domain in which this Taylor series converges? where it needs to be in the form when g is analytic in the disk |z-z0|<R ? that cube is messing me up in this. thanks
 
You want the nth derivative of g evaluated at 2. Write down a few terms (like I did) to get comfortable with the form and then figure out how to write it. To determine the radius of convergence you could apply the ratio test to the series you get. But you are expanding around z=2 and if you are doing complex analysis you will eventually learn that the radius of convergence is the distance from z=2 to the nearest singularity of g(z)=1/z^3.
 
This is complex analysis so the only singularity is 0. I think. so the distance from 2 to 0 is 2. so to write the circle of convergence is |z-2|<2 ?
thanks
 
buzzmath said:
This is complex analysis so the only singularity is 0. I think. so the distance from 2 to 0 is 2. so to write the circle of convergence is |z-2|<2 ?
thanks

Yessssss.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top