Hello, guys. I am studying the Taylor Theorem for functions of n variables and in one book I've found a proof based on the lemma that I am copying here. I am having some trouble in following its proof so I seek your kind assistance.(adsbygoogle = window.adsbygoogle || []).push({});

The lemma rests on two items: the definition of a function of n variables differentiable in a point "a" and the Mean Value Theorem for functions of n variables.

I. A function [tex] f:U\rightarrow{R}, [/tex] defined in an open set [tex] U \subset R^n,[/tex] is said to be differentiable in a point [tex] (a_1,...,a_n) \in U[/tex] when it fulfills these conditions:

1. There exist the partial derivatives [tex] \frac{\partial}{\partial x_1}f(a_1,...,a_n),..., \frac{\partial}{\partial x_n}f(a_1,...,a_n)[/tex].

2. For every [tex] v = (v_1,...,v_n) [/tex] such that [tex] a + v \in U [/tex] we got

[tex] f(a+v) - f(a) = \sum_{i=1}^{n} v_i \frac{\partial}{\partial x_i}f(a) + r(v), [/tex] where [tex] \lim_{\Vert{v}\Vert\rightarrow 0} \frac{r(v)}{\Vert{v}\Vert}=0 [/tex].

II. The Mean Value Theorem.

Let the function [tex] f:U\rightarrow{R} [/tex] be differentiable in the open set [tex] U \subset R^n,[/tex] and the line [tex] [a, a+v] \subset U[/tex]; then we can find a [tex] \theta \in (0,1) [/tex] such that

[tex] f(a+v) - f(a) = \sum_{i=1}^{n} v_i \frac{\partial}{\partial x_i}f(a+ \theta v) [/tex].

Now I state the

Lemma.- Let be the function [tex]r:B\rightarrow{R}[/tex] of class [tex]C^2[/tex] in the open ball [tex]B \subset R^n[/tex] of center [tex] (0,...,0).[/tex] If for every [tex] i = 1,..., n [/tex] we got [tex]r(0,...,0) = \frac{\partial}{\partial x_i}r(0,...,0) = \frac{\partial^2}{\partial x_j \partial x_i}r(0,...,0) = 0, [/tex] then [tex] \lim_{\Vert{v}\Vert\rightarrow 0} \frac{r(v)}{\Vert{v}\Vert^2}=0 [/tex].

And here I copy literally the proof of the author:

"Proof.-

1. "Being [tex]r:B\rightarrow{R}[/tex] a function of class [tex]C^1[/tex] (therefore differentiable) that gets null in the point [tex] (0,...,0)[/tex] (and the same for its derivatives [tex] \frac{\partial}{\partial x_i}r [/tex]), it follows from the definition of differentiable function that [tex] \lim_{\Vert{v}\Vert\rightarrow 0} \frac{r(v)}{\Vert{v}\Vert}=0 [/tex]". (My note: OK, this is fine).

2. "By the Mean Value Theorem, for each [tex] v = (v_1,..., v_n) \in B[/tex] exists [tex] \theta \in (0,1) [/tex] such that [tex] r(v) = \sum_{i=1}^{n} v_i \frac{\partial}{\partial x_i}r(\theta v). [/tex] Therefore [tex] \frac{r(v)}{\Vert{v}\Vert^2}= \sum_{i=1}^{n} {\frac {1}{\Vert{v}\Vert}v_i \frac{\partial}{\partial x_i}r(\theta v) [/tex]." (OK, this is fine also).

3. "Every partial derivative [tex] \frac{\partial}{\partial x_i}r [/tex]

and its derivatives [tex] \frac{\partial^2}{\partial x_j \partial x_i}r, [/tex] gets null in the point [tex] (0,...,0) [/tex]. Hence, from our initial observation (I suppose he refers to paragraph 1? ) it follows that (I do not understand this) [tex] \lim_{\Vert{v}\Vert\rightarrow 0} {\frac {1}{\Vert{v}\Vert}}{\frac{\partial}{\partial x_i}r(\theta v)} = 0 [/tex] for all [tex] i = 1,...,n.[/tex]"

4. "Furthermore, each quocient [tex] \frac {v_i}{\Vert{v}\Vert} [/tex]has absolute value [tex]\leqq 1[/tex]. Therefore [tex] \lim_{\Vert{v}\Vert\rightarrow 0} \frac{r(v)}{\Vert{v}\Vert^2}=0 [/tex]".

End of proof.

As I've said, the results of paragraphs 1 and 2 are OK. My trouble is the inference of paragraph 3. I know that each partial derivative [tex] \frac{\partial}{\partial x_i}r [/tex] is on its own right a function differentiable in [tex] (0,...,0) [/tex], so applying the definition we've seen before the lemma we got for every [tex] i = 1,...,n [/tex] that [tex]\lim_{\Vert{v}\Vert\rightarrow 0} {\frac {1}{\Vert{v}\Vert} \frac{\partial}{\partial x_i}r(\theta v) = 0 [/tex]. But I don't catch up how this fact leads to the result of paragraph 3. Or maybe he gets that result in another way which escapes me.

Can I ask for your assistance?

P Castilla.

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Taylor theorem in n variables

Loading...

Similar Threads for Taylor theorem variables | Date |
---|---|

Can someone explain the Taylor's Theorem error bound? | Jan 24, 2016 |

Taylor's Theorem Error Bound | Sep 25, 2015 |

Estimates of the remainder in Taylor's theorem | Feb 7, 2015 |

Taylor's Theorem | Jan 16, 2015 |

Taylor's theorem for multivariable functions | Apr 9, 2013 |

**Physics Forums - The Fusion of Science and Community**