Taylor's Theorem: Explaining the Sum Telescoping

  • Thread starter Thread starter glebovg
  • Start date Start date
  • Tags Tags
    Theorem
Physics news on Phys.org
Yes. By the product rule, the derivative of each term contains two parts: the part where you are differentiating f^{(n)}(x) and the part where you re differentiating (b- x)^n. The first part cancels the previous term and the second part cancels the next term.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top