Technical question about loop corrections

Worldsheep
Messages
1
Reaction score
0
Does anyone know a simple explanation for the following statement:

Gauge invariance ⇒ $Πμνϒϒ(0) = ΠμνϒZ(0) = 0$

Where ΠVV' is the V to V' one loop correction, ϒ is the photon field and Z is the Z-boson field. The argument of Π is the incoming momentum q2 = 0
 
Physics news on Phys.org
Your photon propagator is
$$D_{\mu \nu}(q)=-\frac{1}{q^2-q^2 \Pi(q^2)+\mathrm{i} 0^+}[g_{\mu \nu}-q_{\mu} q_{\nu}] + A(q^2) q^{\mu} q^{\nu},$$
where ##A(q^2)## is a gauge-dependent non-interacting piece, which doesn't enter any physical result.

Now the photon has strictly 0 mass. Together with the Ward-Takahashi identity of the photon polarization tensor, which makes it purely 4-transverse, this implies that
$$\Pi_{\mu \nu}=q^2 \Pi(q^2) (g_{\mu \nu}-q_{\mu} q_{\nu}).$$
##\Pi## is a logarithmically divergent scalar. Now to make the residuum of the photon propgator 1 at ##q^2=0##, you impose the renormalization condition
$$\Pi(q^2=0)=0.$$
The same argument holds for the ##\gamma##-Z mixing piece too.

Note that the above renormalization condition is dangerous with regard to infrared divergences, which must be resummed. For this purpose it's better to choose the renormalization point in the space-like.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top