Temperature and molecular kinetic energy. [PLEASE help me]

AI Thread Summary
The discussion centers around calculating the average speed of helium molecules at room temperature and pressure, specifically at 293 K and 105 Pa. The original poster struggled with the calculations, initially using incorrect values and methods, leading to a significantly lower speed than the expected 1350 m/s. After receiving guidance, they realized the importance of using the mass of a single helium atom instead of the molar mass, which allowed them to correct their approach. Ultimately, they successfully calculated the average speed as approximately 1351.82 m/s. The thread highlights the significance of understanding molecular mass and kinetic energy equations in solving such problems.
gabloammar
Messages
73
Reaction score
0

Homework Statement



Okay I've been stuck with this problem for two whole freaking days now, and it's really gotten on my nerves and I've given up completely on it because I'm positive I didn't pick up the concept for this even though I studied it from about 4 different books! It's just a simple calculation but I don't know how to think while solving it, so PLEASE help me. Here it is.Q. Calculate the average speed of helium molecules at room temperature and pressure.

That's it. Not a word more.

Homework Equations



I've only got temperature [it's supposed to be 293 K in my case] and 105 Pa is the pressure. So the single equation that comes to my mind is,

E = \frac{3kT}{2}

with 'k' being the Boltzmann constant 1.38 x 10-23 J K-1

The Attempt at a Solution



I find the value for E, which is a retardedly low value but I use it nonetheless because I've got nothing else going for me.

E = 6.0651x10-21

Now, I use \frac{1}{2}m<c2>.
m equals the mass for one mole of helium, which is 4g. [going on a whim here]
and c2 is the mean square speed. So now it's,

\frac{1}{2} x 4 x <c2> = 6.0651x10-2

I get <c2> = 3.03x10-21

and then I take the square root to get the value of c and over here c equals 5.505x10-11 ms-1.

The actual answer is supposed to be 1350 ms-1.

I see I haven't used the pressure anywhere in this. That's because I don't see where I CAN use it. -____-
Someone PLEEASEE help! I've been stuck with this for HOURS and my brain's turning into mush now! Plus if someone could clear up what my misconceptions about this specific equation are, then that'd be welcome so I don't make this mistake again. [I've got another question asking about finding the speed of molecules as well and I can't find it again because of the ridiculously low values I'm getting, but I'm not putting that up here because I know if I'm able to solve this single question then the rest should be cake. Thanks! [and sorry I've made it so long, just wanted to make sure I didn't miss anything]]
 
Physics news on Phys.org
You could work backwards using the velocity to find the mass. It's the mass of a single helium atom.
 
Okay wait let me do that, and I'll get back to you.
 
Okay I took the answer and put it in the energy formula and I got the mass as 6.65x10-27 kg. The problem with this is that, the only things I can use in this question are the temperature, the pressure I suppose, the mass of one mole of Helium atoms [in kg, I'd been doing it in grams uptil now, but that's not helped me in the slightest], the Boltzmann constant, and that's it I think.

Finding the mass of one atom of Helium through this way [which I'm not even sure if I've done the right way or not] would require me to know the value for speed beforehand, but I don't. So NOW help me.
 
Btw, I googled 'the mass of a helium atom,' and though it didn't give the value for that, I did find a yahoo answers page with a question mostly similar to mine. But the equation that guy uses, I haven't ever seen it. He even gets the speed for the Helium, but I don't really understand how he gets it. Any help?

http://answers.yahoo.com/question/index?qid=20110106221858AA9QS1T
 
Omg I feel like crying! Done! I completely got the idea that I COULD find the mass of one atom of helium from the molar mass of helium out of my head! It came back and I did it and the now my answer's correct! :D

1351.82 metres per second!

Thank youu!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top