scott_alexsk said:
Alright, my total research goal is to look at nitinol uses in aircraft. At some point I will be constructing a wing using the material. In order to contrast the effeciency of the current method of hydrolics and the nitinol I need to know for one how well each solution moves air but also how much energy both methods use. But this is subject to change. Coming up with a 'standard' to measure the nitinol wing agaisnt will be a real annoying task if I do it. Please do not put too much time into this. My teacher contacted a university nearby today and they should be able to help me work out this problem, so really just general observations of potential flaws or ideas are welcome.
Thanks,
-scott
Off the top of my head:
The main problem I can think of is the fact that nitinol needs to be heated to fairly high temps to return to it's memory shape, and the atmosphere is very cold at cruising altitude. This would mean the aircraft would have sluggish control surfaces at altitude, or they might not work at all. They would also not work in very cold environments.
You would be limited by the amount of travel available in a piece of Nitinol. Since any Nitinol wires I have heard of can only contract about 10% of their length or even less, you would need a very long wire to gain the same amount of travel as a hydraulic piston, or would have to use a complicated lever system.
Additionally, a nitinol "piston" would have to be very large, meaning it wouldn't be able to heat and cool very rapidly, further degrading your control surfaces' reaction time.
Nitinol wires are only able to pull, and as a result it would be difficult to fit the necessary levers needed for a pulling wire to "push" into a wing for a control surface to move in the correct direction (take for example the air brakes on the top of an airliner's wing). This also means you would need a nitinol piston for movement in each direction, where as a piston can pull AND push. It's obvious that this would be quite difficult to implement in the limited space of a wing.
Finally, nitinol wires are not very efficient at converting electrical energy to mechanical work compared to a hydraulic system. Far too much energy is being lost to heat.
Unfortunately, it sounds like nitinol would not be a very good replacement for hydraulics...