guhan
- 43
- 1
This may not be a differential geometry question (and a posting of this in Linear & Abstract Algebra forum didnt help either) but Hodge dual is used in diff geom in a slightly different form. Hence posting here:
If A is a p-vector, then the hodge dual, *A is a (n-p)-vector and is defined by:
A\ \wedge\ B = (*A,B)E \ \ ,\ \forall B\in \Lambda ^{(n-p)}
\ where,\ \ E = e_1 \wedge\ ... \ \wedge e_n
I am having trouble in deriving the tensor components of the dual (n-p)-vector - *A in an orthonormal basis.
Specifically, I am getting stuck when I write down the components of the (n,0)-tensor on both sides and then comparing the coefficients - because, the LHS involves the antisymmetrization, A^{[i_1 ... i_p}B^{j_1 ... j_{n-p} ] }\ .
I proceeded as follows, taking B to be a simple (n-p)-vector of orthonormal basis vectors...
i.e.\ \ Let\ B\ =\ e_{i_{p+1}}\ \wedge\ e_{i_{p+2}}\ \wedge\ ... \wedge\ e_{i_n} <br /> \ =\ \frac{1}{n!} \epsilon^{i_{p+1}, ... ,i_n}\ e_{i_{p+1}} \otimes ... \otimes e_{i_n}
where \epsilon (epsilon) is the Levi-Civita symbol and e_{i_x} (subscripted e) are the o.n. basis vectors.
LHS
=\ A\ \wedge\ B\
=\ A^{[i_1 ... i_p}B^{j_1 ... j_{n-p} ] }\ e_{i_1}\otimes ... \otimes e_{i_p}\otimes e_{i_{p+1}} \otimes ... \otimes e_{i_n}
=\ \left(\ \frac{1}{n!} \sum_\sigma\ (-1)^\sigma\ A^{i_{\sigma (1)} ... i_{\sigma (p)}}\ \epsilon ^ {i_{\sigma (p+1)} ... i_{\sigma (n)}}\ \right)\ \ e_{i_1}\otimes ... \otimes e_{i_p}\otimes e_{i_{p+1}} \otimes ... \otimes e_{i_n}
RHS
=\ (*A,B)\ E
=\ (*A,B)\ e_1 \wedge\ ... \ \wedge e_n
=\ \left(\ (*A,B)\ \frac{1}{n!}\ \epsilon^{i_1, ... ,i_p,i_{p+1}, ... ,i_n}\ \right) e_{i_1}\otimes ... \otimes e_{i_p}\otimes e_{i_{p+1}} \otimes ... \otimes e_{i_n}
=\ \left(\ \frac{1}{n!}\ \left(\ (n-p)!\ *A^{j_1,...,j_{n-p}} \epsilon_{j_1, ... ,j_{n-p}}\ \right)\ \epsilon^{i_1, ... ,i_p,i_{p+1}, ... ,i_n}\ \right) e_{i_1}\otimes ... \otimes e_{i_p}\otimes e_{i_{p+1}} \otimes ... \otimes e_{i_n}
Any pointers on how to proceed further to get the components of *A^{i_1,...,i_{n-p}} ?
If A is a p-vector, then the hodge dual, *A is a (n-p)-vector and is defined by:
A\ \wedge\ B = (*A,B)E \ \ ,\ \forall B\in \Lambda ^{(n-p)}
\ where,\ \ E = e_1 \wedge\ ... \ \wedge e_n
I am having trouble in deriving the tensor components of the dual (n-p)-vector - *A in an orthonormal basis.
Specifically, I am getting stuck when I write down the components of the (n,0)-tensor on both sides and then comparing the coefficients - because, the LHS involves the antisymmetrization, A^{[i_1 ... i_p}B^{j_1 ... j_{n-p} ] }\ .
I proceeded as follows, taking B to be a simple (n-p)-vector of orthonormal basis vectors...
i.e.\ \ Let\ B\ =\ e_{i_{p+1}}\ \wedge\ e_{i_{p+2}}\ \wedge\ ... \wedge\ e_{i_n} <br /> \ =\ \frac{1}{n!} \epsilon^{i_{p+1}, ... ,i_n}\ e_{i_{p+1}} \otimes ... \otimes e_{i_n}
where \epsilon (epsilon) is the Levi-Civita symbol and e_{i_x} (subscripted e) are the o.n. basis vectors.
LHS
=\ A\ \wedge\ B\
=\ A^{[i_1 ... i_p}B^{j_1 ... j_{n-p} ] }\ e_{i_1}\otimes ... \otimes e_{i_p}\otimes e_{i_{p+1}} \otimes ... \otimes e_{i_n}
=\ \left(\ \frac{1}{n!} \sum_\sigma\ (-1)^\sigma\ A^{i_{\sigma (1)} ... i_{\sigma (p)}}\ \epsilon ^ {i_{\sigma (p+1)} ... i_{\sigma (n)}}\ \right)\ \ e_{i_1}\otimes ... \otimes e_{i_p}\otimes e_{i_{p+1}} \otimes ... \otimes e_{i_n}
RHS
=\ (*A,B)\ E
=\ (*A,B)\ e_1 \wedge\ ... \ \wedge e_n
=\ \left(\ (*A,B)\ \frac{1}{n!}\ \epsilon^{i_1, ... ,i_p,i_{p+1}, ... ,i_n}\ \right) e_{i_1}\otimes ... \otimes e_{i_p}\otimes e_{i_{p+1}} \otimes ... \otimes e_{i_n}
=\ \left(\ \frac{1}{n!}\ \left(\ (n-p)!\ *A^{j_1,...,j_{n-p}} \epsilon_{j_1, ... ,j_{n-p}}\ \right)\ \epsilon^{i_1, ... ,i_p,i_{p+1}, ... ,i_n}\ \right) e_{i_1}\otimes ... \otimes e_{i_p}\otimes e_{i_{p+1}} \otimes ... \otimes e_{i_n}
Any pointers on how to proceed further to get the components of *A^{i_1,...,i_{n-p}} ?