I Tensor Product in QM: 1D vs 3D Hilbert Spaces

pellman
Messages
683
Reaction score
6
A particle in a 1-D Hilbert space would have position basis states ## |x \rangle ## where ## \langle x' | x \rangle = \delta(x'-x) ## A 3-D Hilbert space for one particle might have a basis ## | x,y,z \rangle ## where ##\langle x', y', z' | x,y,z \rangle = \delta(x'-x) \delta (y-y') \delta(z-z') ## . Would it be correct to write ## | x,y,z \rangle = | x \rangle \otimes | y \rangle \otimes | z \rangle ## ? Why or why not?

Call the 1-D Hilbert space ## H_1 ## and the 3-D Hilbert space ## H_3 ##. Is this question equivalent to asking is ## H_3 = H_1 \otimes H_1 \otimes H_1 ##?
 
Physics news on Phys.org
pellman said:
A particle in a 1-D Hilbert space would have position basis states ## |x \rangle ## where ## \langle x' | x \rangle = \delta(x'-x) ## A 3-D Hilbert space for one particle might have a basis ## | x,y,z \rangle ## where ##\langle x', y', z' | x,y,z \rangle = \delta(x'-x) \delta (y-y') \delta(z-z') ## . Would it be correct to write ## | x,y,z \rangle = | x \rangle \otimes | y \rangle \otimes | z \rangle ## ? Why or why not?
Yes. To see why, it's easier to look at it the other was around. The full Hilbert space is defined as the tensor product of the the three 'component' Hilbert spaces, so that a basis for the full space is the set of all tensor products of basis elements of those three component spaces: ## | x,y,z \rangle = | x \rangle \otimes | y \rangle \otimes | z \rangle ##.

We then define the inner product on the product space in the most natural way, as:
$$\langle x,y,z|x',y',z'\rangle \equiv \langle x|x'\rangle\times\langle y|y'\rangle\times\langle z|z'\rangle$$
and extending linearly. We need to confirm that this obeys the inner product rules, but that's pretty easy to do.

It then follows that
$$\langle x,y,z|x',y',z'\rangle \equiv \langle x|x'\rangle\times\langle y|y'\rangle\times\langle z|z'\rangle\equiv\delta(x'-x) \delta (y-y') \delta(z-z') $$

Call the 1-D Hilbert space ## H_1 ## and the 3-D Hilbert space ## H_3 ##. Is this question equivalent to asking is ## H_3 = H_1 \otimes H_1 \otimes H_1 ##?
The three Hilbert spaces are isomorphic to one another, but they are not the same space, as they relate to different physical phenomena. Hence it is more accurately represented by saying that thre three spaces are ##H_a,H_b,H_c##, with ##H_a\cong H_b\cong H_c## and the full Hilbert space is ##H_3\equiv H_a\otimes H_b\otimes H_c##.
 
Thank you. This was helpful.

What does ## \cong ## mean here?
 
It means 'is isomorphic to'
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
1
Views
594
Replies
1
Views
2K
Replies
61
Views
5K
Replies
8
Views
3K
Replies
17
Views
2K
Replies
13
Views
3K
Replies
2
Views
2K
Back
Top