Test Question: Vector Proof Help

Dahaka14
Messages
73
Reaction score
0
Sorry for notation guys, but I don't know how to use LaTex.

Homework Statement


True or false, there exists a vector v (or set of vectors) in R3 such that v*v = ||v|| (v dot v equals the magnitude of v).


Homework Equations


At first I thought this was false, but then I considered an arbitrary unit vector v=(1/(14)/\(-1/2)*(1,2,3)...in words: one over the square root of fourteen times the vector one, two, three (the unit vector of (1,2,3)).


The Attempt at a Solution



Taking v*v, u get (1*1)/14 + (2*2)/14 + (3*3)/14 = 1/14 + 4/14 + 9/14 = 14/14 = 1, which is trivial for a unit vector. Also, the magnitude is just the square root of this answer, since the components are already squared for dotting itself, which is one; again, trivial. Am I correct or can I not consider a unit vector?
 
Physics news on Phys.org
You just demonstrated that the answer it true. Why are you doubting yourself?
 
I am doubting myself because I had strong opposition from 3 classmates that for some reason you can't use a unit vector for the proof.
 
Well, we can't really tell you if it said that you can't use unit vectors. Regardless, it's clearly true for any unit vector because, using your notation, the equation says ||v||^2 = v*v = ||v||.

Edit: Yeah, I'm really out of it today.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top