The Answer Solving Fourier Transforms: Odd & Even Functions

  • Thread starter Thread starter Niles
  • Start date Start date
  • Tags Tags
    Fourier
Niles
Messages
1,834
Reaction score
0
[SOLVED] Fourier transforms

Homework Statement


Please take a look at the following:

http://books.google.dk/books?id=9p6...M_p7C1N&sig=M8eywUTmbsWbFY6OCqSth13LWFE&hl=da

I have shown that the Fourier transform of f(t) = exp(-|t|) = \sqrt{\frac{2}{pi}}\cdot \frac{1}{1+\omega ^2}.

Now I am having trouble with question A. I know what the inverse Fourier transform is given by, but the we have an odd function (exp(iwt)) multiplied to an even function (the above). This results in an odd function, so how do I rewrite it?
 
Physics news on Phys.org
Ok, I read something about the inverse Fourier transform of an even function, and it adds up now. Problem solved.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top