This is nearly vacuous thing to say, but there was just a post about the rigorous definition of area under a curve, and so I decided to go ahead and mention this..(adsbygoogle = window.adsbygoogle || []).push({});

Given a path (just say a continuous function) [tex]p(t):[a,b] \rightarrow \mathbb{R}^n [/tex], the "length" of the path is defined as

[tex]\Lambda(p) = \ sup \ \sum_{i = 1}^k |p(t_i)-p(t_{i-1})|[/tex]

where the sup is taken over all partitions [tex]P = \{ a = t_0 <... < t_k = b \}[/tex] of [a,b]. The theorem mentioned in Cal 3 is that if p is piecewise differentiable, then [tex]\Lambda(p) = \int_a^b |p'(t)| dt[/tex].

Once upon a time I would have only tried to remember the integral, and not necessarily the definition. But if you give any thought to it at all, it's clear that the definition of length is much more interesting than the integral which you use to calculate length. The definition shows you the straightforward process to find length: you choose points on the path, and add up the lengths of the lines connecting the points to come up with an approximation. As you choose a finer partition, the approximation gets closer, and by the triangle inequality, the approximation keeps getting larger.. And a monotonic increasing limiting process either converges or goes to infinity.. And that is the length.

Now to the punchline... In calculus of variations it is proved that "the shortest path between two points is a straight line". But that is almost obvious from the definition of length. You first have to check that for a line p connecting p(a) to p(b), you get [tex]\Lambda (p) = |p(b)-p(a)|[/tex]. By the triangle inequality, [tex]|p(b)-p(a)| \leq \sum_{i=1}^k |p(t_k)-p(t_{k-1})| \leq \Lambda(p)[/tex].

etc., etc., etc...

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# The definition of length (The wrong time to use calculus of variations)

Loading...

Similar Threads - definition length wrong | Date |
---|---|

B Question about a limit definition | Feb 27, 2018 |

Arc Length: Definite and Indefinite Integration | Dec 25, 2014 |

Arc length and definite integral | May 2, 2012 |

Determining a function with knowledge of it's arc length and it's definite integral | Oct 5, 2010 |

**Physics Forums - The Fusion of Science and Community**