The form factor of a radial gaussian charge distribution

wdednam
Messages
33
Reaction score
1

Homework Statement



Compute the form factor of rho(r) = rho0 * exp[-ln2*r^2/R^2]

where rho0 and R are constants.

Homework Equations



F(q) = 4pi/q \intsin(q*r)rho(r)rdr

where the limits of integration run from 0 to \infty

The Attempt at a Solution



This is probably more of a math problem, and I've tried everything mathematical I could think of to evaluate this integral:

Substitution, Integration by parts, taylor approximation to turn the exponential into a polynomial in r, writing sin(q*r) in exponentials... But all of this got me nowhere fast.

Then I tried looking up the integral in a table, but couldn't come across it in 30 pages worth of standard integrals. (Schaum series book)

As a last resort, I tried numerical integration in excel using set values for R and q, but of course the answer depends very much on the values of R and q, so this offered me no insight.

Thanks in advance for any help.

Wynand.
 
Physics news on Phys.org
what if you instead of this sin-thing use the more general form of the Form factor, that it is the fourier-transform of the charge distribution?

I can have a closer look later, I know I have done this problem a couple of years ago
 
I think that might just work, thank you.

Let me try and see where it gets me, and then I'll get back to you here to let you know how it went.

Thanks again!

Wynand.
 
So, I could do the integral based on your suggestion. Here is the answer I got:

F(q) = (pi/ln2)^(3/2)*R^3*rho0*exp{-q^2*R^2/(4ln2)}

Thanks a lot again.

wdednam.
 
It looks ok to me :-)

Well done
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top