The gold leaf electroscope and the photoelectric effect

AI Thread Summary
Charging an electroscope with a negatively charged rod causes electrons to move to the bottom, raising the gold leaf. When light above the fundamental frequency is shone on the top plate, electrons are liberated from the plate, causing the leaf to fall. The liberated electrons disperse into the surroundings, forming an electron cloud that expands due to mutual repulsion. The discussion also references the Richardson-Dushman equation, which relates to electron emission. Overall, the mechanics of electron liberation and its effects on the electroscope's charge are clarified.
zoya76
Messages
4
Reaction score
0
The theory I have read
When you charge an electroscope with a negatively charged rod, electrons are repelled to the bottom of the electroscope and the gold leaf rises. Then when you shine light above the fundamental frequency on the top plate of the electroscope, electrons are liberated from the plate and the leaf falls.

What I don't understand
Where are these electrons liberated too? Where do they go? And are they dragged up from the gold leaf before being liberated somewhere? If they are liberated from the plate itself (too somewhere) then surely the plate will get even more positively charged and therefore the leaf would stay elevated. Am I missing something?
 
Physics news on Phys.org
Hello zoya76,

Welcome to Physics Forums!

Maybe the problem statement is implying that the electrocsope is charged by touching the top plate with the negatively charged rod. That would give a net negative charge to the whole kit and kaboodle (i.e. the top plate and the gold leaf). This would cause the gold leaf to rise due to its net negative charge, and the top plate would maintain a negative charge too (that is, until you neutralize the whole thing by blasting some electrons off the top plate by shining a high-frequency light on it).
 
Last edited:
zoya76 said:
The theory I have read
When you charge an electroscope with a negatively charged rod, electrons are repelled to the bottom of the electroscope and the gold leaf rises. Then when you shine light above the fundamental frequency on the top plate of the electroscope, electrons are liberated from the plate and the leaf falls.

What I don't understand
Where are these electrons liberated too? Where do they go? And are they dragged up from the gold leaf before being liberated somewhere? If they are liberated from the plate itself (too somewhere) then surely the plate will get even more positively charged and therefore the leaf would stay elevated. Am I missing something?

I think that initially the electrons are liberated into the surroundings and form an electron cloud which expands under mutual repulsion as more electrons are added.I have a vague memory of something called the Richardson Dushman equation which quantifies the cloud formed by thermionic emission.Try googling to see if this equation or some sort of variation of it can be applied to photoelectric emission and answer your question in greater depth.
 
Thanks guys. It makes sense now. I think I'll have to use this forum more frequently!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...

Similar threads

Replies
37
Views
6K
Replies
2
Views
2K
Replies
1
Views
5K
Replies
2
Views
10K
Replies
8
Views
3K
Back
Top