The Hilbert space L²([0,2pi], R) and Fourier series.

quasar987
Science Advisor
Homework Helper
Gold Member
Messages
4,796
Reaction score
32

Homework Statement


Is there a way to prove that E={sin(nx), cos(nx): n in N u {0}} is a maximal orthonormal basis for the Hilbert space L²([0,2pi], R) of square integrable functions (actually the equivalence classes "modulo equal almost everywhere" of the square integrable functions)?

I mean, I am asking if we can show directly, using the definition or some other characterization, that E is a Hilbert space basis for L², so that we can conclude that L² functions are equal to their Fourier series. In other words, we can't use the fact that L² functions converge to their Fourier series to show that E is maximal.


Homework Equations



Relevant characterizations of "E is a hilbert space basis" that I am aware of:

(1) E is a maximal orthonormal set
(2) the orthogonal complement of E is trivial
(3) the span of E is dense



The Attempt at a Solution

 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top