I The irreducible representations of of su(2): Highest weight method

Hydaspex
Messages
3
Reaction score
3
TL;DR Summary
I need to understand this passage from "An Elementary Introduction to Groups and Representations" Brian C. Hall
Hi all I need to understand the following passage from Hall link page 78 :

Some notation first:

Basis for ##sl(2;C)##:

##H=\begin{pmatrix} 1&0\\0&−1\end{pmatrix} ;X=\begin{pmatrix} 0&1\\0&0\end{pmatrix} ;Y=\begin{pmatrix} 0&0\\1&0\end{pmatrix} ##

which have the commutation relations

##[H,X] = 2X ~ ~, [H,Y] =−2Y ~ , [X,Y] =H ####π(X)## acts as the raising operator such that:

##π(H)π(X)u= (α+ 2)π(X)u ##

##π(Y)## acts as the lowering operator such that:

##π(H)π(Y)u= (α−2)π(Y)u ##

There is some N≥0 such that ##π(X)^Nu \neq 0##

but ##π(X)^{N+1}u= 0 ##

We define ##u_0=π(X)^Nu ## then

##(H)u_0=λu_0##

##π(X)u_0= 0 ##
Now, by definition

##u_{k+1}=π(Y)u_k##

Using ##π(H)u_k= (λ−2k)u_k## and induction we have##π(X)u_{k+1}=π(X)π(Y)u_{k}
\\= (π(Y)π(X) +π(H))u_k
\\=π(Y) [kλ−k(k−1)]u_{k−1}+ (λ−2k)u_k
\\= [kλ−k(k−1) + (λ−2k)]u_k##I don't understand how to get ##kλ−k(k−1)]## at the third passage and why ## (λ−2k)u_k## should be zero to get

##π(X)u_{k+1}= [kλ−k(k−1)]u_k##.
 
Last edited:
Physics news on Phys.org
I have difficulties to understand how the representation is finally defined. There seem to be some mistakes in what you have written. E.g. the lines where you explain the action of ##\pi(X)## is actually the description of ##\pi(H)##, which leaves ##\pi(X).u## invariant. And I do not see where ##k^2## comes from, and ##(\lambda - 2k)u_k## isn't zero, why should it be?

I hope I gave a better description of the theorem here:
https://www.physicsforums.com/insights/lie-algebras-a-walkthrough-the-representations/
 
please read page 77 of the pdf at the link...the full proof is laid out... the theorem is clear and I don't see mistakes yet that passage to prove the lemma is obscure. Wikipedia refers to that book...https://en.wikipedia.org/wiki/Representation_theory_of_SU(2) ...
"Weights and the structure of the representation"
 
So the key is Lemma 5.11. I will omit the ##\pi## and write shortly ##\pi(X)(v)=X.v##.

As always, let us list what we have:
##u_0:=X^N.u## such that ##H.u_0=\lambda u_0=(2N+\alpha)u_0## and ##X.u_0=0\,.##
##u_k:=Y^k.u_0## and thus ##H.u_k=(\lambda-2k)u_k\,.##

The only equation which is used repeatedly is ##A.B.v=[A,B].v+B.A.v## where ##[A,B]=C## is known, so ##A.B.v=C.v+B.A.v## This is the general procedure. In Lemma 5.11. we want to know, what ##X.u_k## is.

##X.u_0 = 0## per definition of ##u_0\,.##
## X.u_1=X.Y^1.u_0= [X,Y].u_0+Y.X.u_0= H.u_0+Y.0=\lambda u_0 \,.##
Now per induction we have
\begin{align*}
X.u_{k+1}&=X.Y^{k+1}.u_0 =X.Y.(Y^k.u_0)=[X,Y].(Y^k.u_0) +Y.X.(Y^k.u_0)\\
&=H.Y^k.u_0+Y.(X.Y^k.u_0)=H.u_k+Y.(X.u_k)\\&=(\lambda-2k)u_k+[k\lambda-k(k-1)]Y.u_{k-1}\\
&=\left(\lambda - 2k + k \cdot \lambda - k^2 +k\right)u_k\\&=\left[(k+1)\lambda - k^2 - k\right]u_k\\
&=\left[(k+1)\lambda - (k+1)k\right]u_k
\end{align*}
 
  • Like
Likes Hydaspex
It was so obvious...Thank you for your help and I will read your insight.
 
  • Like
Likes berkeman
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top