AMF8
- 13
- 0
why does d e^x / dx = e^x ?
AMF8 said:why does d e^x / dx = e^x ?
benorin said:Is power series too much?
0 = e^x ?Integral said:As Binorin said.
e = 1 + x + \frac {x^2} {2!} + \frac {x^3} {3!} +\frac {x^4} {4!} + ...
Now differentiate.
Robokapp said:Power rule doesn't work for variables.
e^x=> xe^(x-1) is not right as far as i can tell.
Hehe, its probably just a typoneutrino said:0 = e^x ?![]()
You may be correctIgor_S said:Hehe, its probably just a typo, it should be:
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots
(offcourse :)
Orion1 said:Can it not be argued that that the solution is derived from theorem?
Of course, without the knowledge that dex/dx=ex, you wouldn't know that the anti-derivative of 1/x is ln(x)!VikingF said:y' = y
\frac{dy}{dx}=y
We multiply with dx on each side and divide by y:
\frac{dy}{y} = dx
Integrals please!
\int{\frac{dy}{y}} = \int{dx}
lny = x+C'
Out of knowledge of the natural logarithm:
y = e^{x+C'}
y = e^xe^{C'}
C=e^{C'}
y = Ce^x
That's it!![]()
apmcavoy said:Of course, without the knowledge that dex/dx=ex, you wouldn't know that the anti-derivative of 1/x is ln(x)!
cepheid said:It looks circular, but you could go the other way 'round the circle i.e. start by defining a function as a solution to the integral:
f(x) = \int{\frac{dx}{x}}
Without evaluating the integral (because you don't know how), you can figure out some of the properties of the function and see that it has all the properties of a logarithm function (is there some way to make that more rigourous?) Call it the natural logarithm (it arose naturally in our investigation of that integral). Then ask, what is the base of this mysterious logarithm? What are the properities of the inverse exponential function? Once you find out that this base crops up everywhere in the natural sciences, it makes sense that it is natural exponential function.
My first year calculus textbook did it both ways. Personally I like starting out with the exponential function (DH's post) better.