The number of vibrational modes g(v)dv in Debye theory

Sizhe
Messages
7
Reaction score
1

Homework Statement


Show that, in the Debye theory, the number of excited vibrational modes in the frequency range ##\nu## to ##\nu+d\nu##, at temperature T, is proportional to x2e-x, where ##x=h\nu/kT##. The maximum in this function occurs at a frequency ##\nu'=2kT/h##; hence ##\nu'→0## as ##T→0##.

2. The attempt at a solution
The Debye theory gives that ##g(\nu)\sim α\nu^2##. Since the problem comtains the term of ##e^{-x}##. I think it might be related to the partition equation of single excited classic oscillator(##n>0##):
$$
q(\theta_i)=e^{-\frac{3\theta_i}{2T}}\Sigma_{n=0}^{\infty}(e^{-\theta_i/T})^n=\frac{e^\frac{3\theta_i}{2T}}{1-e^{-\theta_i/t}}
$$
where ##\theta_i=h\nu_i/k##. So the partition equation for the monoatomic crystal becoms:
$$
Q=e^{-N\phi(0)/2kT}\Pi_{i=1}^{3N}q(\theta_i)
$$
and
$$
-lnQ = \frac{N\phi(0)}{2kT}+\int^\infty_0[ln(1-e^{-h\nu/kT})+\frac{3h\nu}{2kT}]g(\nu)d\nu
$$
where ##\phi(0)## is the internal energy of all the atoms in the crystal are at equilibrium locations and ##N## the number of atoms. With these equations and:
$$
\int^\infty_0g(\nu)d\nu=3N
$$
How should I proceed to get ##g(\nu)d\nu## ?
 
Physics news on Phys.org
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top