phoenixthoth
- 1,600
- 2
TUZFC
the general idea is to find a way to axiomatize a universal set into existence in a way that doesn't contradict other axioms.
there are potential ways this might be done, including
1. changing the subsets axiom
2. using ternary logic and changing all axioms
1 would go something like this: there is a set with the usual subset properties UNLESS the existence of that subset leads to a contradiction.
2 would be to use 3 valued or ternary logic. see the two articles here:
http://plato.stanford.edu/entries/logic-fuzzy/
http://plato.stanford.edu/entries/logic-manyvalued/
there isn't a unique way to do fuzzy logic, but let's at least assume that ternary logic generalizes binary logic in the following way:
\begin{array}{cccccccc}<br /> A & B & \symbol{126}A & A\vee B & A\wedge B & A\rightarrow B & <br /> A\leftrightarrow B & \left( A\wedge \left( A\rightarrow B\right) \right)<br /> \rightarrow B \\ <br /> T & T & F & T & T & T & T & T \\ <br /> T & M & F & T & M & M & M & M \\ <br /> T & F & F & T & F & F & F & T \\ <br /> M & T & M & T & M & T & M & T \\ <br /> M & M & M & M & M & M & M & M \\ <br /> M & F & M & M & F & M & M & M \\ <br /> F & T & T & T & F & T & F & T \\ <br /> F & M & T & M & F & T & M & T \\ <br /> F & F & T & F & F & T & T & T<br /> \end{array}
the main observation is that russell's paradox is based on a tautology that isn't a tautology in ternary logic. also note that the standard modus ponens above also fails to be a tautology. however, one may be able to resuce this fact by eliminating ternary logic from all axioms except the subsets axiom in the following way:
in non SS (subsets) axioms, if there is a well formed formula W, and V() is an operator that sends a wff to its truth value, then by replacing appearances of W in the axiom by V(W)=T, we get similar results as the axiom "intends" while still allowing V(W) to be occasionally M. for example, while A<->B if A and B are either both true or both false, V(A<->B)=M if either V(A)=M or V(B)=M. by replacing A<->B with V(A<->B)=T, we get the usual results.
in the case of SS, we can replace it by this:
SS2: \exists x\forall yV\left( \left( y\in x\leftrightarrow y\in a\wedge A\left( y\right) \right) \right) \neq F.
this would not contradict the following axiom:
US: \exists x\forall yV\left( y\in x\right) =T
at least by russell's paradox. there may be other ways US contradicts TZFC, ternary-ZFC.
a list of axioms. in TUZFC, versions 2 would be more appropriate:
1. axiom of extensionality:
\forall x\left( x\in a\leftrightarrow x\in b\right) \rightarrow a=b
axiom of extensionality version 2:
V\left( \forall x\left( V\left( x\in a\leftrightarrow x\in b\right)<br /> =T\right) \rightarrow a=b\right) =T
2. axiom of the unordered pair:
\exists x\forall y\left( y\in x\leftrightarrow y=a\vee y=b\right)
axiom of the unordered pair version 2:
V\left( \exists x\forall y\left( V\left( y\in x\leftrightarrow y=a\vee<br /> y=b\right) =T\right) \right) =T
3. axiom of subsets:
\exists x\forall y\left( y\in x\leftrightarrow y\in a\wedge A\left(<br /> y\right) \right)
axiom of subsets version 2:
V\left( \exists x\forall yV\left( y\in x\leftrightarrow y\in a\wedge<br /> A\left( y\right) \right) =T\right) =T
axiom of subsets version 3:
V\left( \exists x\forall yV\left( \left( y\in x\leftrightarrow y\in a\wedge<br /> A\left( y\right) \right) \right) \neq F\right) =T
4. axiom of the sum set:
\exists x\forall y\left( y\in x\leftrightarrow \exists z\in a\left( y\in<br /> z\right) \right)
axiom of the sum set version 2:
V\left( \exists x\forall y\left( V\left( y\in x\leftrightarrow<br /> \exists z\in a\left( y\in z\right) \right) =T\right) \right) =T
5. axiom of the power set:
\forall x\exists y\left( \forall z\left( z\in y\leftrightarrow z\subset<br /> x\right) \right)
axiom of the power set version 2:
V\left( \forall x\exists y\left( \forall zV\left( z\in<br /> y\leftrightarrow z\subset x\right) =T\right) \right) =T
6. axiom of the empty set:
\exists x\forall y\left( y\notin x\right)
axiom of the empty set version 2:
V\left( \exists x\forall yV\left( y\in x\right) =F\right) =T
7. axiom of infinity:
\exists x\left( \O \in x\wedge \forall y\in x\left( y^{\prime }\in x\right)<br /> \right)
axiom of infinity version 2:
V\left( \exists x\left( V\left( \O \in x\wedge \forall y\in<br /> x\left( y^{\prime }\in x\right) \right) =T\right) \right) =T
8. axiom of the universal set
V\left( \exists x\forall yV\left( y\in x\right) =T\right) =T
9. axiom of replacement:
\exists x\forall y\in a\left( \exists zA\left( y,z\right) \rightarrow<br /> \exists z\in xA\left( y,z\right) \right)
axiom of replacement version 2:
V\left( \exists x\forall y\in a\left( V\left( \exists zA\left(<br /> y,z\right) \rightarrow \exists z\in xA\left( y,z\right) \right) =T\right)<br /> \right) =T
10. axiom of foundation/regularity:
\exists xA\left( x\right) \rightarrow \exists x\left( A\left( x\right)<br /> \wedge \forall y\in x\left( !A\left( y\right) \right) \right)
axiom of foundation/regularity version 2:
V\left( \exists xA\left( x\right) \rightarrow \exists x\left(<br /> V\left( A\left( x\right) \wedge \forall y\in x\left( !A\left( y\right)<br /> \right) \right) =T\right) \right) =T
11. axiom of choice (typo?):
\forall x\in a\exists A\left( x,y\right) \rightarrow \exists y\forall x\in<br /> aA\left( x,y\left( x\right) \right).
axiom of choice version 2:
V\left( \forall x\in a\exists A\left( x,y\right) \rightarrow<br /> \exists y\forall x\in aA\left( x,y\left( x\right) \right) \right) =T
the general idea is to find a way to axiomatize a universal set into existence in a way that doesn't contradict other axioms.
there are potential ways this might be done, including
1. changing the subsets axiom
2. using ternary logic and changing all axioms
1 would go something like this: there is a set with the usual subset properties UNLESS the existence of that subset leads to a contradiction.
2 would be to use 3 valued or ternary logic. see the two articles here:
http://plato.stanford.edu/entries/logic-fuzzy/
http://plato.stanford.edu/entries/logic-manyvalued/
there isn't a unique way to do fuzzy logic, but let's at least assume that ternary logic generalizes binary logic in the following way:
\begin{array}{cccccccc}<br /> A & B & \symbol{126}A & A\vee B & A\wedge B & A\rightarrow B & <br /> A\leftrightarrow B & \left( A\wedge \left( A\rightarrow B\right) \right)<br /> \rightarrow B \\ <br /> T & T & F & T & T & T & T & T \\ <br /> T & M & F & T & M & M & M & M \\ <br /> T & F & F & T & F & F & F & T \\ <br /> M & T & M & T & M & T & M & T \\ <br /> M & M & M & M & M & M & M & M \\ <br /> M & F & M & M & F & M & M & M \\ <br /> F & T & T & T & F & T & F & T \\ <br /> F & M & T & M & F & T & M & T \\ <br /> F & F & T & F & F & T & T & T<br /> \end{array}
the main observation is that russell's paradox is based on a tautology that isn't a tautology in ternary logic. also note that the standard modus ponens above also fails to be a tautology. however, one may be able to resuce this fact by eliminating ternary logic from all axioms except the subsets axiom in the following way:
in non SS (subsets) axioms, if there is a well formed formula W, and V() is an operator that sends a wff to its truth value, then by replacing appearances of W in the axiom by V(W)=T, we get similar results as the axiom "intends" while still allowing V(W) to be occasionally M. for example, while A<->B if A and B are either both true or both false, V(A<->B)=M if either V(A)=M or V(B)=M. by replacing A<->B with V(A<->B)=T, we get the usual results.
in the case of SS, we can replace it by this:
SS2: \exists x\forall yV\left( \left( y\in x\leftrightarrow y\in a\wedge A\left( y\right) \right) \right) \neq F.
this would not contradict the following axiom:
US: \exists x\forall yV\left( y\in x\right) =T
at least by russell's paradox. there may be other ways US contradicts TZFC, ternary-ZFC.
a list of axioms. in TUZFC, versions 2 would be more appropriate:
1. axiom of extensionality:
\forall x\left( x\in a\leftrightarrow x\in b\right) \rightarrow a=b
axiom of extensionality version 2:
V\left( \forall x\left( V\left( x\in a\leftrightarrow x\in b\right)<br /> =T\right) \rightarrow a=b\right) =T
2. axiom of the unordered pair:
\exists x\forall y\left( y\in x\leftrightarrow y=a\vee y=b\right)
axiom of the unordered pair version 2:
V\left( \exists x\forall y\left( V\left( y\in x\leftrightarrow y=a\vee<br /> y=b\right) =T\right) \right) =T
3. axiom of subsets:
\exists x\forall y\left( y\in x\leftrightarrow y\in a\wedge A\left(<br /> y\right) \right)
axiom of subsets version 2:
V\left( \exists x\forall yV\left( y\in x\leftrightarrow y\in a\wedge<br /> A\left( y\right) \right) =T\right) =T
axiom of subsets version 3:
V\left( \exists x\forall yV\left( \left( y\in x\leftrightarrow y\in a\wedge<br /> A\left( y\right) \right) \right) \neq F\right) =T
4. axiom of the sum set:
\exists x\forall y\left( y\in x\leftrightarrow \exists z\in a\left( y\in<br /> z\right) \right)
axiom of the sum set version 2:
V\left( \exists x\forall y\left( V\left( y\in x\leftrightarrow<br /> \exists z\in a\left( y\in z\right) \right) =T\right) \right) =T
5. axiom of the power set:
\forall x\exists y\left( \forall z\left( z\in y\leftrightarrow z\subset<br /> x\right) \right)
axiom of the power set version 2:
V\left( \forall x\exists y\left( \forall zV\left( z\in<br /> y\leftrightarrow z\subset x\right) =T\right) \right) =T
6. axiom of the empty set:
\exists x\forall y\left( y\notin x\right)
axiom of the empty set version 2:
V\left( \exists x\forall yV\left( y\in x\right) =F\right) =T
7. axiom of infinity:
\exists x\left( \O \in x\wedge \forall y\in x\left( y^{\prime }\in x\right)<br /> \right)
axiom of infinity version 2:
V\left( \exists x\left( V\left( \O \in x\wedge \forall y\in<br /> x\left( y^{\prime }\in x\right) \right) =T\right) \right) =T
8. axiom of the universal set
V\left( \exists x\forall yV\left( y\in x\right) =T\right) =T
9. axiom of replacement:
\exists x\forall y\in a\left( \exists zA\left( y,z\right) \rightarrow<br /> \exists z\in xA\left( y,z\right) \right)
axiom of replacement version 2:
V\left( \exists x\forall y\in a\left( V\left( \exists zA\left(<br /> y,z\right) \rightarrow \exists z\in xA\left( y,z\right) \right) =T\right)<br /> \right) =T
10. axiom of foundation/regularity:
\exists xA\left( x\right) \rightarrow \exists x\left( A\left( x\right)<br /> \wedge \forall y\in x\left( !A\left( y\right) \right) \right)
axiom of foundation/regularity version 2:
V\left( \exists xA\left( x\right) \rightarrow \exists x\left(<br /> V\left( A\left( x\right) \wedge \forall y\in x\left( !A\left( y\right)<br /> \right) \right) =T\right) \right) =T
11. axiom of choice (typo?):
\forall x\in a\exists A\left( x,y\right) \rightarrow \exists y\forall x\in<br /> aA\left( x,y\left( x\right) \right).
axiom of choice version 2:
V\left( \forall x\in a\exists A\left( x,y\right) \rightarrow<br /> \exists y\forall x\in aA\left( x,y\left( x\right) \right) \right) =T
Last edited: