MHB The Set of Positive Integers as a Copy of the Natural Numbers ....

Click For Summary
The discussion centers on a clarification of Theorem 1.3.7 from Ethan D. Bloch's book regarding the Peano Postulates and the assertion that \( p \neq 1 \). Participants express confusion over this claim, suggesting it may be incorrect and that the intended statement could be \( p + 1 \neq 1 \), which aligns with the Peano Postulates. The conversation highlights the importance of accurately interpreting mathematical definitions and theorems. Additionally, there is a request for clearer images of Bloch’s statements on integers for better understanding. Overall, the thread emphasizes the need for precise language in mathematical proofs.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Ethan D. Bloch's book: The Real Numbers and Real Analysis ...

I am currently focused on Chapter 1: Construction of the Real Numbers ...

I need help/clarification with an aspect of Theorem 1.3.7 ...

Theorem 1.3.7 and the start of the proof reads as follows:https://www.physicsforums.com/attachments/6994In the above proof we read the following:" ... ... By Part (a) of the Peano Postulates we know that $$p \ne 1$$. ... ... " Can someone please explain exactly how the Peano Postulate (a) implies that $$p \ne 1$$ ... ?
Help will be much appreciated ...

Peter
The above post mentions the Peano Postulates so I am providing Bloch's statement of these postulates for the natural numbers ... as follows:
https://www.physicsforums.com/attachments/6995Readers of the above question may well be helped by access to Bloch's definition of the integers as well as Bloch's theorem on the algebraic properties of the integers ... so I am providing both as follows:

https://www.physicsforums.com/attachments/6996

View attachment 6997
 
Physics news on Phys.org
I would agree that this claim $(p\not=1)$ is quite confusing, if not downright wrong. By definition of Bloch's function $i$, we have $i(1)=[(1+1,1)]=:\hat{1}$. Because $1\in\mathbb{N}$, $i(1)\in i(\mathbb{N})$. So it could be that $y=i(1)$. But then $y=[(1+1,1)]$, with $p=1$. There's no contradiction here that I can see. While Peano's axiom part (a) does assure us that $s(n)\not=1 \; \forall \, n\in\mathbb{N},$ it's not clear that Bloch is claiming $p$ to be the successor of something. If $p$ was the successor of something - that is, if $p=s(n)$ for some $n\in\mathbb{N}$ - then I would agree $p\not=1$.

Your image of Bloch's theorem on the algebraic properties of the integers is too small to be legible, I'm afraid. It would help if you could enlarge that.
 
I am inclined to suspect that what was intended was "By part (a) of the Peano Postulates we know that $$p+1\ne 1$$" since that is what the "part (a) of the Peano Postulates" says.
 
Last edited by a moderator:
HallsofIvy said:
I am inclined to suspect that what was intended was "By part (a) of the Peano Postulates we know that $$p+1\ne 1$$" since that is what the "part (a) of the Peano Postulates" says.

Thanks to Ackbach ana HallsofIvy for the help and support ...

Agree it should be p+1 is not equal to 1 ...

Thanks again,

Peter
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K