The Toppling Stack: Finding Equilibrium and Minimum Values

  • Thread starter Thread starter mrknowknow
  • Start date Start date
  • Tags Tags
    Toppling
AI Thread Summary
The discussion centers on a physics problem involving a stack of N identical boxes on a frictionless table, where a force F is applied to the bottom box, potentially causing the stack to topple. Participants are tasked with mathematically demonstrating that separation occurs between the first and second boxes, calculating the minimum force F required for toppling, and determining the minimum static friction coefficient mu_s that prevents toppling without sliding. The problem emphasizes the importance of understanding the forces and moments acting on the boxes to establish equilibrium conditions. A suggested approach involves analyzing the moments about the pivot point of the top box to derive necessary inequalities. The conversation highlights the need for clarity in applying physical principles to solve the problem effectively.
mrknowknow
Messages
39
Reaction score
0

Homework Statement



The Toppling Stack

There is a stack of N boxes (rectangular solids) on a level frictionless table. Each box has the same uniform density, has the same mass M, and has the same dimensions L x W x H. The bottom box is pulled with a constant force F parallel to the table. The dimension H is perpendicular to the table and perpendicular to F; the dimension L is parallel to the table and is parallel to F; and the dimension W is parallel to the table and perpendicular to F. The coefficient of friction between the boxes is mu_s. Assume the acceleration due to gravity, g, is constant for the entire stack. The bottom box is Box 1, the box directly on top of Box 1 is Box 2, ..., the top box is Box N.

If F is large enough, some boxes will fall by toppling over (not sliding off).

a) Show mathematically that the separation should occur between the Box 1 and Box 2.
b) What is the minimum value of F which will cause the boxes to fall. Answer in terms of g, H, L, M, N, and / or W.
c) Find the minimum value of mu_s which will make falling over impossible without sliding first. Answer in terms of g, H, L, M, N, and / or W.

The three parts can be done separately.

Homework Equations



F=μkN

The Attempt at a Solution


I drew a picture of 4 boxes and labeled the forces but I don't know how to proceed further...
 
Physics news on Phys.org
Consider the stack as a set of N-n blocks on top of a set of n blocks.
Taking moments about the point where the upper set might topple from the lower set, what inequality do you get for equilibrium? (Put in an unknown 'a' for the linear acceleration.)
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top