The Two-Particle Density function

MalleusScientiarum
I have a question regarding the two-particle density function, in particular its Fourier transform. I know that in a liquid or gas the function n_2(\mathbf{R}_1, \mathbf{R}_2) is the probability that two particles will be found at \mathbf{R}_1 and \mathbf{R}_2. But what is the significance of its Fourier transform,
G(\mathbf{k}) = \frac{1}{2} \int d^{3N}\mathbf{R}_1 d^{3N}\mathbf{R}_2 e^{\imath \mathbf{k}\cdot(\mathbf{R}_1 - \mathbf{R}_2)} n_2(\mathbf{R}_1, \mathbf{R}_2)

My guess is that it is some sort of momentum distribution, but that's only a guess.
 
Physics news on Phys.org
It seems to me that, in the classical context, where there is no de Broglie relation between position and momentum, this formalism is not expected to yield any significative result concerning what we classically call as linear momentum probability distribution.
I would interpretate this calculation as purely a description in terms of weights of wave vectors of plane waves such that, when accordingly superposed yield the surface you transformed.

Another point: With no uncertainty principle, deltas of Dirac in position representation have no reason to yield plane wave in "momentum space" and therefore, minimum knowledge about momentum.
 
In the general case:
G(\mathbf{k}_1,\mathbf{k}_2 ) = \int d^{3N}\mathbf{R}_1 d^{3N}\mathbf{R}_2 e^{\imath \cdot(\mathbf{k}_1 \mathbf{R}_1+\mathbf{k}_2 \mathbf{R}_2)} n_2(\mathbf{R}_1, \mathbf{R}_2)
 
Last edited by a moderator:
Well obviously, but not if the interaction potential is a central force.
 
Thread 'Why is there such a difference between the total cross-section data? (simulation vs. experiment)'
Well, I'm simulating a neutron-proton scattering phase shift. The equation that I solve numerically is the Phase function method and is $$ \frac{d}{dr}[\delta_{i+1}] = \frac{2\mu}{\hbar^2}\frac{V(r)}{k^2}\sin(kr + \delta_i)$$ ##\delta_i## is the phase shift for triplet and singlet state, ##\mu## is the reduced mass for neutron-proton, ##k=\sqrt{2\mu E_{cm}/\hbar^2}## is the wave number and ##V(r)## is the potential of interaction like Yukawa, Wood-Saxon, Square well potential, etc. I first...
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top